论文标题
冰淇淋:生成的潜在纹理对象
GeLaTO: Generative Latent Textured Objects
论文作者
论文摘要
表现出透明度,反射和薄结构的3D对象的准确建模是一个极具挑战性的问题。受计算机图形中使用的广告牌和几何代理的启发,本文提出了一种生成的潜在纹理对象(Gelato),这是一种紧凑的表示,结合了一组粗大的代理,将低频几何形状定义低频几何形状与学习的神经纹理,以编码中等规模的几何形状和细微的几何形状以及与观点相关的外观。为了生成代理的纹理,我们学习了一个联合潜在空间,允许类别级别的外观和几何插值。代理通过其相应的神经纹理独立栅格化,并使用U-NET进行合成,该u-net生成了包括alpha映射的输出逼真的图像。我们通过从一组稀疏的一组视图中重建复杂的对象来证明我们的方法的有效性。我们在眼镜框架的真实图像的数据集上显示了结果,这对于使用经典方法重建特别具有挑战性。我们还证明,当易于建模的基础对象几何形状(例如眼镜)或使用神经网络(例如汽车)(例如汽车)生成的神经网络(例如汽车)时,可以将这些粗糙的代理进行手工制作。
Accurate modeling of 3D objects exhibiting transparency, reflections and thin structures is an extremely challenging problem. Inspired by billboards and geometric proxies used in computer graphics, this paper proposes Generative Latent Textured Objects (GeLaTO), a compact representation that combines a set of coarse shape proxies defining low frequency geometry with learned neural textures, to encode both medium and fine scale geometry as well as view-dependent appearance. To generate the proxies' textures, we learn a joint latent space allowing category-level appearance and geometry interpolation. The proxies are independently rasterized with their corresponding neural texture and composited using a U-Net, which generates an output photorealistic image including an alpha map. We demonstrate the effectiveness of our approach by reconstructing complex objects from a sparse set of views. We show results on a dataset of real images of eyeglasses frames, which are particularly challenging to reconstruct using classical methods. We also demonstrate that these coarse proxies can be handcrafted when the underlying object geometry is easy to model, like eyeglasses, or generated using a neural network for more complex categories, such as cars.