论文标题

Lagrangian光谱指标的界限

Bounds on the Lagrangian spectral metric in cotangent bundles

论文作者

Biran, Paul, Cornea, Octav

论文摘要

令$ n $为封闭的歧管,$ u \ u \ subset t^*(n)$一个$ n $的cotangengent束中的有界域,包含零部分。由于Viterbo引起的一个猜想断言,零部分与零部分精确的Lagrangian Submanifolds的光谱度量是有界的。在本文中,我们在两个这样的lagrangians $ l_0,l_1 $之间的光谱距离上建立了一个上限,该距离线性地取决于$(l_0,f)$和$(l_1,f)$ floer综合体的边界深度,其中$ f $是cotangent束的纤维。

Let $N$ be a closed manifold and $U \subset T^*(N)$ a bounded domain in the cotangent bundle of $N$, containing the zero-section. A conjecture due to Viterbo asserts that the spectral metric for Lagrangian submanifolds that are exact-isotopic to the zero-section is bounded. In this paper we establish an upper bound on the spectral distance between two such Lagrangians $L_0, L_1$, which depends linearly on the boundary depth of the Floer complexes of $(L_0, F)$ and $(L_1, F)$, where $F$ is a fiber of the cotangent bundle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源