论文标题
二氧化硅结构中辐射缺陷动力学的通用分析模型
Universal Analytic Model of Irradiation Defect Dynamics in Silica-Silicon Structures
论文作者
论文摘要
辐照损伤是极端环境下半导体设备的关键物理问题。几十年来,在恒定剂量速率下具有二氧化硅结构晶体管的电离辐射诱导的损伤是由散装二氧化硅区域中均匀的$ e'$中心建模的,以及它们在二氧化硅 - 硅离子接口处的不可逆转换为$ p_b $中心。但是,传统模型无法解释实验观察到的缺陷浓度对剂量的依赖性,尤其是在低剂量率下。在这里,我们建议,由于无序二氧化硅中诱导的孔的分散性扩散,$ e'$的产生被减速,并且$ p_b $的转换是由于辐照下重组增强的缺陷反应而可逆的。结果表明,基于这些新理解的衍生分析模型可以一致地解释缺陷浓度对剂量和剂量率的基本依赖性。
Irradiation damage is a key physics issue for semiconductor devices under extreme environments. For decades, the ionization-irradiation-induced damage in transistors with silica-silicon structures under constant dose rate is modeled by a uniform generation of $E'$ centers in the bulk silica region and their irreversible conversion to $P_b$ centers at the silica-silicon interface. But, the traditional model fails to explain experimentally observed dependence of the defect concentrations on dose, especially at low dose rate. Here, we propose that, the generation of $E'$ is decelerated due to the dispersive diffusion of induced holes in the disordered silica and the conversion of $P_b$ is reversible due to recombination-enhanced defect reactions under irradiation. It is shown that the derived analytic model based on these new understandings can consistently explain the fundamental but puzzling dependence of the defect concentrations on dose and dose rate in a wide range.