论文标题

库拉莫托模型中的瞬时频率

Instantaneous frequencies in the Kuramoto model

论文作者

da Fonseca, Julio D., Leonel, Edson D., Chaté, Hugues

论文摘要

利用库拉莫托全球耦合相振荡器的主要结果与几何分析中的概率和广义函数理论的方法结合在一起,我们扩展了库拉莫托的结果并获得了瞬时频率(阶段速度)分布的数学描述。我们的结果通过数值模拟进行了验证,在固有频率具有正常和β分布的情况下,我们将其说明。在这两种情况下,我们都会改变耦合强度并系统地比较时间平均频率的分布(Kuramoto理论的已知结果)与瞬时频率的分布,重点关注它们在同步频率及其尾巴中的同步频率附近的定性差异。对于带有幂律尾巴的一类固有频率分布(包括凯奇·洛伦兹分布),我们通过从瞬时频率分布的功率系列扩展获得的渐近公式分析稀有事件。

Using the main results of the Kuramoto theory of globally coupled phase oscillators combined with methods from probability and generalized function theory in a geometric analysis, we extend Kuramoto's results and obtain a mathematical description of the instantaneous frequency (phase-velocity) distribution. Our result is validated against numerical simulations, and we illustrate it in cases where the natural frequencies have normal and Beta distributions. In both cases, we vary the coupling strength and compare systematically the distribution of time-averaged frequencies (a known result of Kuramoto theory) to that of instantaneous frequencies, focussing on their qualitative differences near the synchronized frequency and in their tails. For a class of natural frequency distributions with power-law tails, which includes the Cauchy-Lorentz distribution, we analyze rare events by means of an asymptotic formula obtained from a power series expansion of the instantaneous frequency distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源