论文标题

Ni掺杂的MOS $ _2 $中的增强层间相互作用以及掺杂网站的结构和电子签名

Enhanced interlayer interactions in Ni-doped MoS$_2$, and structural and electronic signatures of doping site

论文作者

Karkee, Rijan, Guerrero, Enrique, Strubbe, David A.

论文摘要

MOS $ _2 $的晶体结构在平面中具有强共价键,而弱的范德华相互作用从平面中产生了有趣的特性,例如固体润滑,光电子和催化,可以通过过渡 - 金属掺杂来增强它们。但是,改进甚至掺杂材料的结构的机制尚不清楚,我们通过理论计算来解决。基于我们先前关于大量2H相的NI掺杂工作,现在我们将多型型(1H单层和3R散装)进行比较,以确定Ni的有利位点以及对结构,电子特性和层解离能的掺杂效应。最有利的插入/ADATOM位点是3R(例如2H)的四面体插入和1H。相对能量表明,在Mo或M的替换中,我们发现可以使用的结构和电子特性可以从2H到3R变化,这些特性可用于识别掺杂位点,包括Mo-取代的3R和2H中的金属行为,以及用于MO-和S- s-替代的1H的间隙状态的1H,这些态度具有有趣的光胶质性化。我们观察到与其他过渡金属的效果相反的Ni掺杂MOS $ _2 $的层间相互作用的大幅增强。对于润滑应用,这种增加的层解离能可能是低磨损的机制。我们的系统研究显示了掺杂浓度的效果,我们推断至低掺杂极限。这项工作使您可以深入了解Ni掺杂的MOS $ _2 $的结构,以及如何通过实验检测到它,掺杂单层和散装系统的能量和结构的关系,掺杂下的电子特性以及掺杂者对层相互作用的影响。

The crystal structure of MoS$_2$ with strong covalent bonds in plane and weak Van der Waals interactions out of plane gives rise to interesting properties for applications such as solid lubrication, optoelectronics, and catalysis, which can be enhanced by transition-metal doping. However, the mechanisms for improvement and even the structure of the doped material can be unclear, which we address with theoretical calculations. Building on our previous work on Ni-doping of the bulk 2H phase, now we compare to polytypes (1H monolayer and 3R bulk), to determine favorable sites for Ni and the doping effect on structure, electronic properties, and the layer dissociation energy. The most favorable intercalation/adatom sites are tetrahedral intercalation for 3R (like 2H) and Mo-atop for 1H. The relative energies indicate a possibility of phase change from 2H to 3R with substitution of Mo or S. We find structural and electronic properties that can be used to identify the doping sites, including metallic behavior in Mo-substituted 3R and 2H, and in-gap states for Mo- and S-substituted 1H, which could have interesting optoelectronic applications. We observe a large enhancement in the interlayer interactions of Ni-doped MoS$_2$, opposite to the effect of other transition metals. For lubrication applications, this increased layer dissociation energy could be the mechanism of low wear. Our systematic study shows the effect of doping concentration and we extrapolate to the low-doping limit. This work gives insight into the previously unclear structure of Ni-doped MoS$_2$ and how it can be detected experimentally, the relation of energy and structures of doped monolayers and bulk systems, the electronic properties under doping, and the effect of doping on interlayer interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源