论文标题

分布式深钢筋学习,用于在能量收集虚拟化小细胞中功能分裂控制

Distributed Deep Reinforcement Learning for Functional Split Control in Energy Harvesting Virtualized Small Cells

论文作者

Temesgene, Dagnachew Azene, Miozzo, Marco, Gündüz, Deniz, Dini, Paolo

论文摘要

为了满足增强网络容量的日益增长的追求,移动网络运营商(MNOS)正在部署小单元的密集基础设施。反过来,这增加了移动网络的功耗,从而影响了环境。结果,我们看到了最近的趋势,即用收获的环境能量为移动网络供电,以实现环境和成本收益。在本文中,我们考虑了一个由能量收获器提供动力并配备可充电电池的虚拟小单元(VSC)网络,该网络可以在网格连接的边缘服务器上脱落基带(BB)功能,取决于其能源可用性。我们制定了相应的网格能量和交通降速率最小化问题,并提出了分布式的深钢筋学习(DDRL)解决方案。 VSC之间的协调可以通过电池状态信息进行交换。网络性能在网格能源消耗和流量下降速度方面的评估证实,通过知识交换实现VSC之间的协调可以达到接近最佳的性能。数值结果还证实,所提出的DDRL解决方案提供了更高的网络性能,更好地适应不断变化的环境,并且相对于用作基准测试的表格多代理增强学习(MRL)解决方案的成本节省更高。

To meet the growing quest for enhanced network capacity, mobile network operators (MNOs) are deploying dense infrastructures of small cells. This, in turn, increases the power consumption of mobile networks, thus impacting the environment. As a result, we have seen a recent trend of powering mobile networks with harvested ambient energy to achieve both environmental and cost benefits. In this paper, we consider a network of virtualized small cells (vSCs) powered by energy harvesters and equipped with rechargeable batteries, which can opportunistically offload baseband (BB) functions to a grid-connected edge server depending on their energy availability. We formulate the corresponding grid energy and traffic drop rate minimization problem, and propose a distributed deep reinforcement learning (DDRL) solution. Coordination among vSCs is enabled via the exchange of battery state information. The evaluation of the network performance in terms of grid energy consumption and traffic drop rate confirms that enabling coordination among the vSCs via knowledge exchange achieves a performance close to the optimal. Numerical results also confirm that the proposed DDRL solution provides higher network performance, better adaptation to the changing environment, and higher cost savings with respect to a tabular multi-agent reinforcement learning (MRL) solution used as a benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源