论文标题

地下流问题的最佳贝叶斯实验设计

Optimal Bayesian experimental design for subsurface flow problems

论文作者

Tarakanov, Alexander, Elsheikh, Ahmed H.

论文摘要

最佳贝叶斯设计技术提供了实验最佳参数的估计,以便在实际收集数据之前最大化测量值。换句话说,这些技术探索了可能的观察空间,并确定实验设置,该设置平均产生有关系统参数的最大信息。通常,最佳的贝叶斯设计制剂会产生多个高维积分,这些积分很难在不产生明显的计算成本的情况下进行评估,因为每个集成点都对应于求解偏微分方程的耦合系统。在目前的工作中,我们提出了一种新型的方法来开发设计实用程序功能的多项式混乱扩展(PCE)替代模型。特别是,我们证明了如何利用PCE基础多项式的正交性来替代在可能的观察结果上通过直接构建PCE近似来代替可能的观察到的昂贵集成,以获得预期的信息增益。这项新型技术可以通过与几个单点评估相当的计算预算来推导针对目标的目标函数的合理质量响应表面。因此,提出的技术大大降低了最佳贝叶斯实验设计的总成本。我们在几个具有各种复杂程度的数值测试案例上使用PCE评估了这种替代配方,以说明所提出方法的计算优势。

Optimal Bayesian design techniques provide an estimate for the best parameters of an experiment in order to maximize the value of measurements prior to the actual collection of data. In other words, these techniques explore the space of possible observations and determine an experimental setup that produces maximum information about the system parameters on average. Generally, optimal Bayesian design formulations result in multiple high-dimensional integrals that are difficult to evaluate without incurring significant computational costs as each integration point corresponds to solving a coupled system of partial differential equations. In the present work, we propose a novel approach for development of polynomial chaos expansion (PCE) surrogate model for the design utility function. In particular, we demonstrate how the orthogonality of PCE basis polynomials can be utilized in order to replace the expensive integration over the space of possible observations by direct construction of PCE approximation for the expected information gain. This novel technique enables the derivation of a reasonable quality response surface for the targeted objective function with a computational budget comparable to several single-point evaluations. Therefore, the proposed technique reduces dramatically the overall cost of optimal Bayesian experimental design. We evaluate this alternative formulation utilizing PCE on few numerical test cases with various levels of complexity to illustrate the computational advantages of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源