论文标题

MIME:模仿联盟学习中的集中随机算法

Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning

论文作者

Karimireddy, Sai Praneeth, Jaggi, Martin, Kale, Satyen, Mohri, Mehryar, Reddi, Sashank J., Stich, Sebastian U., Suresh, Ananda Theertha

论文摘要

联合学习(FL)是一个挑战性的优化环境,这是由于数据的异质性在不同的客户范围内引起了客户漂移现象。实际上,获得比简单的集中式训练更好的FL算法是迄今为止的主要开放问题。在这项工作中,我们提出了一个一般的算法框架,MIME,我可以减轻客户漂移和ii)调整任意的集中优化算法,例如动量和Adam,以适应联合学习设置的跨设备。 MIME在每个客户端上的步骤中使用控制变量和服务器级统计信息(例如动量)的组合,以确保每个本地更新模仿IID数据上的集中式方法的每个更新。我们证明了一个还原结果,表明MIME可以将集中设置中的通用算法的收敛转化为联合环境中的收敛。此外,我们表明,与降低基于动量的方差相结合时,MIME的速度比任何集中式方法都要快,这是第一个结果。我们还对MIME在现实世界数据集上的性能进行了彻底的实验探索。

Federated learning (FL) is a challenging setting for optimization due to the heterogeneity of the data across different clients which gives rise to the client drift phenomenon. In fact, obtaining an algorithm for FL which is uniformly better than simple centralized training has been a major open problem thus far. In this work, we propose a general algorithmic framework, Mime, which i) mitigates client drift and ii) adapts arbitrary centralized optimization algorithms such as momentum and Adam to the cross-device federated learning setting. Mime uses a combination of control-variates and server-level statistics (e.g. momentum) at every client-update step to ensure that each local update mimics that of the centralized method run on iid data. We prove a reduction result showing that Mime can translate the convergence of a generic algorithm in the centralized setting into convergence in the federated setting. Further, we show that when combined with momentum based variance reduction, Mime is provably faster than any centralized method--the first such result. We also perform a thorough experimental exploration of Mime's performance on real world datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源