论文标题

2D模型凸域上波方程的Strichartz估计

Strichartz estimates for the wave equation on a 2d model convex domain

论文作者

Ivanovici, Oana, Lebeau, Gilles, Planchon, Fabrice

论文摘要

我们证明,比我们早期在2D凸模型上获得的(最佳)色散的(最佳)分散体所预期的估计值更好。这是从我们获得的参数中充分利用了苛性物的时空定位,尽管它们的数量像从源到边界的距离的反平方根一样增加。结果,我们改善了波动方程的已知strichartz估计值。我们以前的参数构建的几种改进是在途中获得的,并且对进一步的应用具有独立的兴趣。

We prove better Strichartz type estimates than expected from the (optimal) dispersion we obtained in our earlier work on a 2d convex model. This follows from taking full advantage of the space-time localization of caustics in the parametrix we obtain, despite their number increasing like the inverse square root of the distance from the source to the boundary. As a consequence, we improve known Strichartz estimates for the wave equation. Several improvements on our previous parametrix construction are obtained along the way and are of independent interest for further applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源