论文标题

haseparator:超平面辅助软马克斯

HASeparator: Hyperplane-Assisted Softmax

论文作者

Kansizoglou, Ioannis, Santavas, Nicholas, Bampis, Loukas, Gasteratos, Antonios

论文摘要

使用卷积神经网络(CNN)有效的特征学习构成了越来越有用的特性,因为计算机视觉的几项具有挑战性的任务倾向于需要级联方案和方式融合。特征学习的目的旨在CNN模型能够提取嵌入,在不同类别之间表现出很高的歧视以及类内的紧凑性。在本文中,引入了一种具有分离器的新方法,该方法的重点是基于超平面的类别,而不是公共类中心分离方案。因此,提出了一种创新的分离器,即超平面辅助软马克斯分离器(haseparator),该分离器在流行的图像分类基准上进行了评估。

Efficient feature learning with Convolutional Neural Networks (CNNs) constitutes an increasingly imperative property since several challenging tasks of computer vision tend to require cascade schemes and modalities fusion. Feature learning aims at CNN models capable of extracting embeddings, exhibiting high discrimination among the different classes, as well as intra-class compactness. In this paper, a novel approach is introduced that has separator, which focuses on an effective hyperplane-based segregation of the classes instead of the common class centers separation scheme. Accordingly, an innovatory separator, namely the Hyperplane-Assisted Softmax separator (HASeparator), is proposed that demonstrates superior discrimination capabilities, as evaluated on popular image classification benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源