论文标题
使用深度学习的人脑MRI中的自动化氏族分割
Automated Claustrum Segmentation in Human Brain MRI Using Deep Learning
论文作者
论文摘要
在过去的二十年中,神经科学为claustrum在哺乳动物前脑结构和功能中的核心作用提供了有趣的证据。然而,人类中对氏族的体内研究相对较少。这样做的原因可能是位于岛状皮质和壳核之间的claustrum的细腻且薄薄的结构,这使得它不适合传统的分割方法。最近,基于深度学习(DL)的方法已成功引入了复杂的皮质下脑结构的自动分割。在下文中,我们提出了一种基于多视图DL的方法,用于分割T1加权MRI扫描中的Claustrum。我们使用专家神经放射科医生作为参考标准的双边手动claustrum注释培训并评估了181个个人的拟议方法。与人类内部的可靠性相比,交叉验证实验产生的中位数相似性,稳健的Hausdorff距离和骰子得分分别为93.3%,1.41mm和71.8%,与人类内部的可靠性相比,分别代表了相等或优越的分割性能。一对一的扫描仪评估表明,算法良好的可传递性向看不见的扫描仪的图像略有下等性能。此外,我们发现,基于DL的Claustrum分段从多视图信息中受益,并且在培训集中需要大约75次MRI扫描样本量。我们得出的结论是,开发的算法允许自动化的clafultum分割,因此产生了促进基于MRI的人类claustrum研究的巨大潜力。我们方法的软件和模型已公开可用。
In the last two decades, neuroscience has produced intriguing evidence for a central role of the claustrum in mammalian forebrain structure and function. However, relatively few in vivo studies of the claustrum exist in humans. A reason for this may be the delicate and sheet-like structure of the claustrum lying between the insular cortex and the putamen, which makes it not amenable to conventional segmentation methods. Recently, Deep Learning (DL) based approaches have been successfully introduced for automated segmentation of complex, subcortical brain structures. In the following, we present a multi-view DL-based approach to segment the claustrum in T1-weighted MRI scans. We trained and evaluated the proposed method in 181 individuals, using bilateral manual claustrum annotations by an expert neuroradiologist as the reference standard. Cross-validation experiments yielded median volumetric similarity, robust Hausdorff distance, and Dice score of 93.3%, 1.41mm, and 71.8%, respectively, representing equal or superior segmentation performance compared to human intra-rater reliability. The leave-one-scanner-out evaluation showed good transferability of the algorithm to images from unseen scanners at slightly inferior performance. Furthermore, we found that DL-based claustrum segmentation benefits from multi-view information and requires a sample size of around 75 MRI scans in the training set. We conclude that the developed algorithm allows for robust automated claustrum segmentation and thus yields considerable potential for facilitating MRI-based research of the human claustrum. The software and models of our method are made publicly available.