论文标题

使用UNET和PSPNET探索CNN参数的可重复性原理

Using UNet and PSPNet to explore the reusability principle of CNN parameters

论文作者

Wang, Wei

论文摘要

如何减少培训数据集规模的需求是深度学习社区中的热门话题。一种直接的方法是重用一些预训练的参数。一些先前的工作,例如深层转移学习,重复使用了第一个任务训练的模型参数,作为第二任任务的起点,半监督学习的学习是通过标记和未标记的数据的组合而训练的。但是,这些方法成功的基本原因尚不清楚。在本文中,通过使用网络进行分割和自动编码器任务来实验量化深卷积神经网络每一层参数的可重复性。本文证明,网络参数可以重复使用,原因有两个:首先,网络功能是一般的;其次,预先训练的参数和理想的网络参数之间几乎没有区别。通过使用参数替换和比较,我们证明可重复性在bn(批发归一化)[7] [7]层和卷积层和一些观察结果:(1)均值和运行方差在BN层中起重要作用和偏差。(2)BN层中的重量和偏差可以在BN层中重复使用。敏感,可以直接重复使用。

How to reduce the requirement on training dataset size is a hot topic in deep learning community. One straightforward way is to reuse some pre-trained parameters. Some previous work like Deep transfer learning reuse the model parameters trained for the first task as the starting point for the second task, and semi-supervised learning is trained upon a combination of labeled and unlabeled data. However, the fundamental reason of the success of these methods is unclear. In this paper, the reusability of parameters in each layer of a deep convolutional neural network is experimentally quantified by using a network to do segmentation and auto-encoder task. This paper proves that network parameters can be reused for two reasons: first, the network features are general; Second, there is little difference between the pre-trained parameters and the ideal network parameters. Through the use of parameter replacement and comparison, we demonstrate that reusability is different in BN(Batch Normalization)[7] layer and Convolution layer and some observations: (1)Running mean and running variance plays an important role than Weight and Bias in BN layer.(2)The weight and bias can be reused in BN layers.( 3) The network is very sensitive to the weight of convolutional layer.(4) The bias in Convolution layers are not sensitive, and it can be reused directly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源