论文标题

在寡头市场的市场均衡中应用固定固定(或最佳接近)点的耦合

Application of Coupled Fixed (or Best Proximity) Points in Market Equilibrium in Oligopoly Markets

论文作者

Dzhabarova, Yulia, Kabaivanov, Stanimir, Ruseva, Margarita, Zlatanov, Boyan

论文摘要

我们提出了对循环图和耦合固定点的有序对概念的一种可能的概括,及其在寡头市场中平衡建模中的应用。我们已经获得了足够的条件,可以在完整的度量空间(均匀凸出Banach空间)中的固定(或最接近)点的存在和独特性。只要我们使用了连续的迭代序列,我们就会获得固定(或最佳接近)的错误估计。我们通过在寡头市场的竞争中建立务实的模型来说明结果的一种可能应用。为了实现这一目标,我们使用一种基于研究每个市场参与者的响应功能的方法,从而可以使用统一的正式方法来解决Cournot和Bertrand工业结构。与双重垄断均衡的限制理论结构相反,我们的研究能够考虑到现实世界中的限制,例如最小的可持续生产水平和对某些资源的独家访问。我们证明并证明,通过使用精心构造的响应功能,可以构建和校准一个模型,以反映极度集中市场中使用的不同竞争策略。响应功能方法也可以考虑到不同的进入障碍。通过符合响应功能而不是收益功能问题的利润最大化,我们将经典优化问题更改为耦合固定点的问题,这具有考虑到Corner Optimus,Corner Equilibria和Readoff功能的凸状态的好处。

We present a possible kind of generalization of the notion of ordered pairs of cyclic maps and coupled fixed points and its application in modelling of equilibrium in oligopoly markets. We have obtained sufficient conditions for the existence and uniqueness of fixed (or best proximity) points in complete metric spaces (uniformly convex Banach spaces). We get an error estimates of the fixed (or best proximity), provided that we have used sequences of successive iterations. We illustrate one possible application of the results by building a pragmatic model on competition in oligopoly markets. To achieve this goal, we use an approach based on studying the response functions of each market participant, thus making it possible to address both Cournot and Bertrand industrial structures with unified formal method. In contrast to the restrictive theoretical constructs of duopoly equilibrium, our study is able to account for real-world limitations like minimal sustainable production levels and exclusive access to certain resources. We prove and demonstrate that by using carefully constructed response functions it is possible to build and calibrate a model that reflects different competitive strategies used in extremely concentrated markets. The response functions approach makes it also possible to take into consideration different barriers to entry. By fitting to the response functions rather than the profit maximization of the payoff functions problem we alter the classical optimization problem to a problem of coupled fixed points, which has the benefit that considering corner optimum, corner equilibria and convexity condition of the payoff function can be skipped.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源