论文标题
$ \ mathbf {a} _n^2 $ - complexes之间的基于地图的同置分类
Homotopy classification of based maps between $\mathbf{A}_n^2$-complexes
论文作者
论文摘要
令$ x,y $ be $(n-1)$ - 连接有限的尖锐的CW-COMPLEXES尺寸,最多$ n+2 $,$ n \ geq 3 $。在本文中,我们给出了基于$ x $至$ y $的$ [x,y] $ [x,y] $ [x,y]的基本证明,这是由于baues和schmidt的。此外,我们确定与$ [x,y] $相关的显式发电机。作为应用程序,我们计算某些chang复合物的自我单位对等效的某些(子)组。
Let $X,Y$ be $(n-1)$-connected finite pointed CW-complexes of dimension at most $n+2$, $n\geq 3$. In this paper we give elementary proofs of the abelian group structure of $[X,Y]$ of homotopy classes of based maps from $X$ to $Y$, which was due to Baues and Schmidt. Furthermore, we determine the explicit generators associated to $[X,Y]$. As an application, we compute certain (sub)groups of self-homotopy equivalences of certain Chang complexes.