论文标题

在Gromov Hyperbolic空间上随机步行的大偏差

Large deviations for random walks on Gromov-hyperbolic spaces

论文作者

Boulanger, Adrien, Mathieu, Pierre, Sert, Cagri, Sisto, Alessandro

论文摘要

让$γ$成为一个可数的群体,该群体作用于Geodesic Gromov-Hyperbolic度量空间$ x $和$μ$ $γ$的概率度量,其支持会产生非质量的子元素。假设$μ$具有有限的指数力矩,我们为随机步行的距离和驾驶量$μ$的随机步行的距离和翻译长度建立了较大的偏差结果。从我们的结果来看,我们推断出关于随机基质产物光谱半径较大偏差的特殊情况。

Let $Γ$ be a countable group acting on a geodesic Gromov-hyperbolic metric space $X$ and $μ$ a probability measure on $Γ$ whose support generates a non-elementary subsemigroup. Under the assumption that $μ$ has a finite exponential moment, we establish large deviations results for the distance and the translation length of a random walk with driving measure $μ$. From our results, we deduce a special case of a conjecture regarding large deviations of spectral radii of random matrix products.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源