论文标题

通过学习潜在语义表示,个性化的视觉艺术推荐

Personalised Visual Art Recommendation by Learning Latent Semantic Representations

论文作者

Yilma, Bereket Abera, Aghenda, Najib, Romero, Marcelo, Naudet, Yannick, Panetto, Herve

论文摘要

在推荐系统中,数据表示技术起着重要作用,因为它们具有纠缠,隐藏和揭示嵌入数据集中的解释性因素的能力。因此,它们会影响建议的质量。具体而言,在视觉艺术(VA)建议中,体现在绘画中体现的概念的复杂性使得通过机器捕获语义的任务远非琐碎。在VA建议中,著名的作品通常使用手动策划的元数据来提出建议。该领域的最新作品旨在利用使用深神经网络(DNN)提取的视觉特征。但是,此类数据表示方法是资源要求的,并且没有直接解释,阻碍用户接受。为了解决这些局限性,我们介绍了一种基于学习绘画的潜在语义表示的视觉艺术推荐方法。具体来说,我们培训了关于绘画文本描述的潜在迪里奇分配(LDA)模型。我们的LDA模型设法成功地发现了绘画之间的非明显语义关系,同时能够提供可解释的建议。实验评估表明,我们的方法比使用预训练的深神经网络提取的视觉特征倾向于表现更好。

In Recommender systems, data representation techniques play a great role as they have the power to entangle, hide and reveal explanatory factors embedded within datasets. Hence, they influence the quality of recommendations. Specifically, in Visual Art (VA) recommendations the complexity of the concepts embodied within paintings, makes the task of capturing semantics by machines far from trivial. In VA recommendation, prominent works commonly use manually curated metadata to drive recommendations. Recent works in this domain aim at leveraging visual features extracted using Deep Neural Networks (DNN). However, such data representation approaches are resource demanding and do not have a direct interpretation, hindering user acceptance. To address these limitations, we introduce an approach for Personalised Recommendation of Visual arts based on learning latent semantic representation of paintings. Specifically, we trained a Latent Dirichlet Allocation (LDA) model on textual descriptions of paintings. Our LDA model manages to successfully uncover non-obvious semantic relationships between paintings whilst being able to offer explainable recommendations. Experimental evaluations demonstrate that our method tends to perform better than exploiting visual features extracted using pre-trained Deep Neural Networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源