论文标题

关于(安全)多方计算与(安全)联合学习之间的关系

On the relationship between (secure) multi-party computation and (secure) federated learning

论文作者

Zhu, Huafei

论文摘要

此简短说明的贡献包含以下两个部分:在第一部分中,我们能够证明Kairouz等人提出的联邦学习(FL)程序。 \ cite {kairouz1901},是一个随机处理。也就是说,可以在多方计算(MPC)的背景下定义FL过程的$ M $ ARY功能;此外,沿Kairouz等人的定义沿FL协议的实例可以看作是定义的$ M $ - ARY功能的实现。因此,FL过程的实例也是MPC协议的实例。简而言之,FL是MPC的子集。 要私下计算定义的FL(M-ARY)功能,已经部署了各种技术,例如同构加密(HE),安全的多方计算(SMPC)和差异隐私(DP)。在第二部分中,我们能够证明,如果基础实例私下计算基于仿真的框架中定义的$ m $ - ary功能,则基于仿真的FL解决方案也是SMPC的实例。因此,SFL是SMPC的子集。

The contribution of this short note, contains the following two parts: in the first part, we are able to show that the federate learning (FL) procedure presented by Kairouz et al. \cite{Kairouz1901}, is a random processing. Namely, an $m$-ary functionality for the FL procedure can be defined in the context of multi-party computation (MPC); Furthermore, an instance of FL protocol along Kairouz et al.'s definition can be viewed as an implementation of the defined $m$-ary functionality. As such, an instance of FL procedure is also an instance of MPC protocol. In short, FL is a subset of MPC. To privately computing the defined FL (m-ary) functionality, various techniques such as homomorphic encryption (HE), secure multi-party computation (SMPC) and differential privacy (DP) have been deployed. In the second part, we are able to show that if the underlying FL instance privately computes the defined $m$-ary functionality in the simulation-based framework, then the simulation-based FL solution is also an instance of SMPC. Consequently, SFL is a subset of SMPC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源