论文标题
人工智能和类星体吸收系统建模;向高红移的基本常数应用
Artificial intelligence and quasar absorption system modelling; application to fundamental constants at high redshift
论文作者
论文摘要
探索自然基本常数可能在时间上或空间上变化的可能性构成了欧洲南部观测站在VLT上的意式浓缩仪以及ELT的雇用光谱仪的关键科学驱动力之一。类星体吸收系统的高分辨率光谱允许对高红移的基本常数进行准确的测量。新数据的质量需要完全客观和可重复的方法。我们已经开发了一种新的基于人工智能的新型方法,该方法能够得出甚至最复杂的吸收系统的最佳模型。 AI结构围绕VPFIT建造,该结构是经过良好开发且经过广泛测试的非线性最小二乘代码。新方法形成了一个复杂的并行系统,消除了人类的决策和偏见。在这里,我们描述了这种系统的工作原理,并将其应用于合成光谱,以建立重要性方法,以供将来对VLT和ELT数据进行分析。结果表明,高红移吸收成分的建模线扩展应包括热和湍流组件。如果不这样做,则意味着很容易得出错误的模型,因此参数估计不正确。我们还认为,模型非唯一性可能很重要,因此,从一个或少量测量值中得出对良好结构常数alpha的明确估计是不可行的。不管建模方法多么最佳,都是使用大量测量样本来有意义地限制时间或空间α变化的基本要求。
Exploring the possibility that fundamental constants of Nature might vary temporally or spatially constitutes one of the key science drivers for the European Southern Observatory's ESPRESSO spectrograph on the VLT and for the HIRES spectrograph on the ELT. High-resolution spectra of quasar absorption systems permit accurate measurements of fundamental constants out to high redshifts. The quality of new data demands completely objective and reproducible methods. We have developed a new fully automated Artificial Intelligence-based method capable of deriving optimal models of even the most complex absorption systems known. The AI structure is built around VPFIT, a well-developed and extensively-tested non-linear least-squares code. The new method forms a sophisticated parallelised system, eliminating human decision-making and hence bias. Here we describe the workings of such a system and apply it to synthetic spectra, in doing so establishing methods of importance for future analyses of VLT and ELT data. The results show that modelling line broadening for high-redshift absorption components should include both thermal and turbulent components. Failing to do so means it is easy to derive the wrong model and hence incorrect parameter estimates. We also argue that model non-uniqueness can be significant, such that it is not feasible to expect to derive an unambiguous estimate of the fine structure constant alpha from one or a small number of measurements. No matter how optimal the modelling method, it is a fundamental requirement to use a large sample of measurements to meaningfully constrain temporal or spatial alpha variation.