论文标题
具有不确定性定量的非平衡流的建模和模拟
Modeling and Simulation of Non-equilibrium Flows with Uncertainty Quantification
论文作者
论文摘要
在对气体动力学的研究中,理论建模和数值模拟主要是通过确定性设置进行的。鉴于流体理论中的粗粒化建模,流场溶液和现实世界物理学之间可能存在相当大的不确定性。为了研究从分子到流体动力学水平的不确定性的出现,传播和演变,带来了巨大的机会和挑战,以发展合理的理论和可靠的多尺度算法。在本文中,我们研究了多尺度气体动态系统的随机行为,尤其是专注于非平衡效应。理论分析是根据动力学模型方程及其宏观宏观系统进行的,并通过随机Galerkin方法进行了重新制定。一种新开发的随机动力学方案被用来对均质松弛,正常的休克结构,剪切层和盖子驱动的空腔问题进行数值模拟。与气体进化过程结合使用了不同种类的不确定性。理论上将在理论上确定和分析新的物理观察,例如平均场和不确定性之间的协同传播模式,不同顺序的不确定性敏感性以及从连续体到稀有政权的边界影响的影响。该论文是一项启发式研究,用于量化多尺度流动动力学中的不确定性。
In the study of gas dynamics, theoretical modeling and numerical simulation are mostly set up with deterministic settings. Given the coarse-grained modeling in theories of fluids, considerable uncertainties may exist between flow-field solutions and real-world physics. To study the emergence, propagation and evolution of uncertainties from molecular to hydrodynamic level poses great opportunities and challenges to develop both sound theories and reliable multi-scale algorithms. In this paper, we study the stochastic behavior of multi-scale gas dynamic systems, especially focusing on the non-equilibrium effects. The theoretical analysis is presented on the basis of kinetic model equation and its upscaling macroscopic system, with the reformulation from the stochastic Galerkin method. A newly developed stochastic kinetic scheme is employed to conduct numerical simulation of homogeneous relaxation, normal shock structure, shear layer and lid-driven cavity problems. Different kinds of uncertainties are involved in conjunction with the gas evolutionary processes. New physical observations, such as the synergistic propagation pattern between mean fields and uncertainties, sensitivity of different orders of uncertainties, and the influence of boundary effects from continuum to rarefied regimes, will be identified and analyzed theoretically. The paper serves as a heuristic study of quantifying the uncertainties within multi-scale flow dynamics.