论文标题
测量数据椭圆形问题,并具有普遍的Orlicz增长
Measure data elliptic problems with generalized Orlicz growth
论文作者
论文摘要
我们研究非线性测量数据椭圆形问题,涉及操作员暴露了广义Orlicz的生长。我们的框架包含了反身的orlicz空间,以及可变指数和双相空间的自然变体。事实证明,近似和重归于的解决方案是任意度量数据的存在,并且在相关的非标准容量相对于基准分散时是唯一的。为了证明措施类别是自然的,提供了弥漫措施的电容性表征。
We study nonlinear measure data elliptic problems involving the operator exposing generalized Orlicz growth. Our framework embraces reflexive Orlicz spaces, as well as natural variants of variable exponent and double-phase spaces. Approximable and renormalized solutions are proven to exist and coincide for arbitrary measure datum and to be unique when the datum is diffuse with respect to a relevant nonstandard capacity. For justifying that the class of measures is natural, a capacitary characterization of diffuse measures is provided.