论文标题
高光谱图像分类的图形卷积网络
Graph Convolutional Networks for Hyperspectral Image Classification
论文作者
论文摘要
要阅读最终版本,请转到IEEE Xplore上的IEEE TGRS。卷积神经网络(CNN)由于其捕获空间 - 光谱特征表示的能力而引起了高光谱(HS)图像分类的越来越多的关注。然而,它们在样本之间建模关系的能力仍然有限。除了网格采样的局限性外,最近提出了图形卷积网络(GCN),并成功地应用于不规则(或非网格)数据表示和分析中。在本文中,我们根据HS图像分类对CNN和GCN进行了彻底研究(定性和定量)。由于在所有数据上构建了邻接矩阵,传统的GCN通常会遭受巨大的计算成本,尤其是在大规模遥感(RS)问题中。为此,我们开发了一种新的迷你GCN(以下称为Minigcn),该GCN允许以迷你批量方式训练大型GCN。更重要的是,我们的MinigCN能够在不重新训练网络并改善分类性能的情况下推断样本外数据。此外,由于CNN和GCN可以提取不同类型的HS功能,因此打破单个模型的性能瓶颈的直观解决方案是将它们融合在一起。由于MinigCN可以进行批处理网络训练(启用CNN和GCN的组合),因此我们探索了三种融合策略:添加剂融合,元素的乘法融合和串联融合以衡量获得的性能增益。在三个HS数据集上进行的广泛实验证明了微型企业比GCN的优势以及对单个CNN或GCN模型的测试融合策略的优越性。为了重现性,这项工作的代码将在https://github.com/danfenghong/ieee_tgrs_gcn上找到。
To read the final version please go to IEEE TGRS on IEEE Xplore. Convolutional neural networks (CNNs) have been attracting increasing attention in hyperspectral (HS) image classification, owing to their ability to capture spatial-spectral feature representations. Nevertheless, their ability in modeling relations between samples remains limited. Beyond the limitations of grid sampling, graph convolutional networks (GCNs) have been recently proposed and successfully applied in irregular (or non-grid) data representation and analysis. In this paper, we thoroughly investigate CNNs and GCNs (qualitatively and quantitatively) in terms of HS image classification. Due to the construction of the adjacency matrix on all the data, traditional GCNs usually suffer from a huge computational cost, particularly in large-scale remote sensing (RS) problems. To this end, we develop a new mini-batch GCN (called miniGCN hereinafter) which allows to train large-scale GCNs in a mini-batch fashion. More significantly, our miniGCN is capable of inferring out-of-sample data without re-training networks and improving classification performance. Furthermore, as CNNs and GCNs can extract different types of HS features, an intuitive solution to break the performance bottleneck of a single model is to fuse them. Since miniGCNs can perform batch-wise network training (enabling the combination of CNNs and GCNs) we explore three fusion strategies: additive fusion, element-wise multiplicative fusion, and concatenation fusion to measure the obtained performance gain. Extensive experiments, conducted on three HS datasets, demonstrate the advantages of miniGCNs over GCNs and the superiority of the tested fusion strategies with regards to the single CNN or GCN models. The codes of this work will be available at https://github.com/danfenghong/IEEE_TGRS_GCN for the sake of reproducibility.