论文标题
OverNet:轻巧的多尺度超分辨率和过度尺度网络
OverNet: Lightweight Multi-Scale Super-Resolution with Overscaling Network
论文作者
论文摘要
由于深度卷积神经网络(CNN)的发展,超分辨率(SR)取得了巨大的成功。但是,随着网络的深度和宽度的增加,基于CNN的SR方法在实践中面临计算复杂性的挑战。此外,他们中的大多数人都会为每个目标分辨率训练专门的模型,失去通用性并增加内存需求。为了解决这些限制,我们引入了OverNet,这是一个深层但轻量级的卷积网络,可通过单个模型以任意规模的因子解决SISR。我们做出以下贡献:首先,我们引入了一个轻巧的递归提取器,该提取器通过跳过和密集连接的新型递归结构来有效地重复使用信息。其次,为了最大程度地提高特征提取器的性能,我们提出了一个重建模块,该模块从过度尺度的特征图生成准确的高分辨率图像,并且可以独立地用于改善现有的体系结构。第三,我们引入了多尺度损耗函数,以实现跨量表的概括。通过广泛的实验,我们证明我们的网络的表现优于先前的最先进的基准,同时使用的参数少于以前的方法。
Super-resolution (SR) has achieved great success due to the development of deep convolutional neural networks (CNNs). However, as the depth and width of the networks increase, CNN-based SR methods have been faced with the challenge of computational complexity in practice. Moreover, most of them train a dedicated model for each target resolution, losing generality and increasing memory requirements. To address these limitations we introduce OverNet, a deep but lightweight convolutional network to solve SISR at arbitrary scale factors with a single model. We make the following contributions: first, we introduce a lightweight recursive feature extractor that enforces efficient reuse of information through a novel recursive structure of skip and dense connections. Second, to maximize the performance of the feature extractor we propose a reconstruction module that generates accurate high-resolution images from overscaled feature maps and can be independently used to improve existing architectures. Third, we introduce a multi-scale loss function to achieve generalization across scales. Through extensive experiments, we demonstrate that our network outperforms previous state-of-the-art results in standard benchmarks while using fewer parameters than previous approaches.