论文标题

Lyapunov指数的单位光盘和扰动理论上的随机Möbius动力学

Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents

论文作者

Dorsch, Florian, Schulz-Baldes, Hermann

论文摘要

随机绘制的$ 2 \ times 2 $矩阵通过Möbius变换在Riemann Sphere上诱导随机动力学。考虑到这种动力学仅限于单位光盘的情况,并且由随机旋转受到进一步随机术语的随机旋转给出,具体取决于两个竞争的小参数,因此确定了随机动力学系统的不变(furstenberg)度量。结果与Lyapunov指数的扰动理论相关,这与一维离散随机schrödinger运算符相关。

Randomly drawn $2\times 2$ matrices induce a random dynamics on the Riemann sphere via the Möbius transformation. Considering a situation where this dynamics is restricted to the unit disc and given by a random rotation perturbed by further random terms depending on two competing small parameters, the invariant (Furstenberg) measure of the random dynamical system is determined. The results have applications to the perturbation theory of Lyapunov exponents which are of relevance for one-dimensional discrete random Schrödinger operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源