论文标题
底漆雷达质量频谱共享:建模基础和性能分析
Underlay Radar-Massive MIMO Spectrum Sharing: Modeling Fundamentals and Performance Analysis
论文作者
论文摘要
在这项工作中,我们研究了LOS/近LOS通道中的底漆雷达质量MIMO细胞共存,在该通道中,这两个系统都具有3D波束成形的功能。使用随机几何形状的数学工具,我们在最差的“细胞边缘波束形成”条件下,由于3D巨大的MIMO细胞下行链路而导致雷达平均干扰能力的上限。为了克服不对称和任意大细胞所遇到的技术挑战,我们设计了一种新颖的结构,其中每个泊松伏罗尼(PV)细胞都受其包皮环的界定,以结合随机细胞形状对平均干扰的影响。由于由于相邻PV细胞的形状和大小之间的相关性,因此该模型对于进一步分析非常有用,因此我们提出了一个可拖动的名义干扰模型,在该模型中,我们将每个PV细胞建模为圆盘,其面积等于典型电池的平均面积。我们量化了这两个模型之间平均干扰能力的差距,并表明上限对于现实的部署参数很紧。我们还将它们与更实用但棘手的MU-MIMO调度模型进行了比较,以表明我们最糟糕的干扰模型显示出相同的趋势,并且不会显着偏离现实的调度程序模型。在标称干扰模型下,我们通过在典型接收器使用3D波束成形时得出Equi-Interference Contour表达式来表征使用主要干扰近似的干扰分布。最后,我们使用可拖动表达式进行干扰分布来表征雷达在准静态目标跟踪方案中误解/检测的空间概率。我们的结果揭示了平均干扰与部署参数函数的有用趋势(BS密度,排除区半径,天线高度,每个BS的发射功率等)。
In this work, we study underlay radar-massive MIMO cellular coexistence in LoS/near-LoS channels, where both systems have 3D beamforming capabilities. Using mathematical tools from stochastic geometry, we derive an upper bound on the average interference power at the radar due to the 3D massive MIMO cellular downlink under the worst-case `cell-edge beamforming' conditions. To overcome the technical challenges imposed by asymmetric and arbitrarily large cells, we devise a novel construction in which each Poisson Voronoi (PV) cell is bounded by its circumcircle to bound the effect of the random cell shapes on average interference. Since this model is intractable for further analysis due to the correlation between adjacent PV cells' shapes and sizes, we propose a tractable nominal interference model, where we model each PV cell as a circular disk with an area equal to the average area of the typical cell. We quantify the gap in the average interference power between these two models and show that the upper bound is tight for realistic deployment parameters. We also compare them with a more practical but intractable MU-MIMO scheduling model to show that our worst-case interference models show the same trends and do not deviate significantly from realistic scheduler models. Under the nominal interference model, we characterize the interference distribution using the dominant interferer approximation by deriving the equi-interference contour expression when the typical receiver uses 3D beamforming. Finally, we use tractable expressions for the interference distribution to characterize radar's spatial probability of false alarm/detection in a quasi-static target tracking scenario. Our results reveal useful trends in the average interference as a function of the deployment parameters (BS density, exclusion zone radius, antenna height, transmit power of each BS, etc.).