论文标题
有效的基于多端口的传送方案
Efficient multi port-based teleportation schemes
论文作者
论文摘要
在此手稿中,我们分析了基于端口的传送(PBT)方案,允许在一个GO中传输多个未知的量子状态(或复合量子状态),该状态在Bob的几个端口中结束。我们研究了我们计划的效率,讨论了确定性和概率案例,当事方共享最大纠缠状态的情况。事实证明,新方案比用于同一任务的最佳PBT协议的各种变体提供了更好的性能。所有结果均以群体理论方式呈现,具体取决于Schur-Weyl二元性中的数量(例如维度和不可约表示的多样性)。通过考虑作用在n个系统上的置换运算符的代数,可以通过对多个子系统作用的部分转置作用扭曲,可以进行分析。考虑到其对希尔伯特空间具有有限维度的n折张量产物的作用,我们提出了相应不可约的矩阵表示的构造,实际上,它们实际上是围墙的brauer代数的基质不可减至的表示。事实证明,引入的形式主义和在其下面的对称性出现在理论物理学和数学的许多方面 - 抗铁磁学理论,重力理论的方面或为特殊任务设计量子电路的问题,例如颠倒不知名的不明式。
In this manuscript we analyse generalised port-based teleportation (PBT) schemes, allowing for transmitting more than one unknown quantum state (or a composite quantum state) in one go, where the state ends up in several ports at Bob's side. We investigate the efficiency of our scheme discussing both deterministic and probabilistic case, where parties share maximally entangled states. It turns out that the new scheme gives better performance than various variants of the optimal PBT protocol used for the same task. All the results are presented in group-theoretic manner depending on such quantities like dimensions and multiplicities of irreducible representations in the Schur-Weyl duality. The presented analysis was possible by considering the algebra of permutation operators acting on n systems distorted by the action of partial transposition acting on more than one subsystem. Considering its action on the n-fold tensor product of the Hilbert space with finite dimension, we present construction of the respective irreducible matrix representations, which are in fact matrix irreducible representations of the Walled Brauer Algebra. I turns out that the introduced formalism, and symmetries beneath it, appears in many aspects of theoretical physics and mathematics - theory of anti ferromagnetism, aspects of gravity theory or in the problem of designing quantum circuits for special task like for example inverting an unknown unitary.