论文标题
评估伯特 - 盐盐方程方法,用于细菌和叶绿素的低洼激发能
Assessment of the Ab Initio Bethe-Salpeter Equation Approach for the Low-Lying Excitation Energies of Bacteriochlorophylls and Chlorophylls
论文作者
论文摘要
细菌氯叶藻和叶绿素分子是细菌,藻类和植物中光合仪的关键基础。它们嵌入了跨膜蛋白复合物中,它们负责光合作用的主要过程:激发能量和电荷转移。在这里,我们在$ GW $近似中使用许多身体扰动理论和Bethe-Salpeter方程(BSE)方法来计算细菌结构的电子结构和光学激励,bacteriophorophylls $ a $ a $,$ b $,$ c $,$ c $,$ d $和$ d $ and $ e $ e $ e $ and chorophyllls $ a $ a $ a $ a and $ b $。我们系统地研究结构,基集大小,$ GW $中的部分自相连以及基础交换相关近似的影响,并将我们的计算与时间依赖性密度功能理论,多段RASPT2和实验文献结果进行比较。我们发现,用$ GW $+BSE计算出的光激发与实验数据非常吻合,对于整个(细菌)叶绿素的整个家族的前三个明亮的激发,平均偏差小于100 \,MEV。与最新的TDDFT相反,具有最佳调整范围分离的混合功能,该精度是在无参数方法中实现的。此外,$ GW $+BSE可以正确地预测低能激发之间的能量差异,并消除了带有(半)局部近似值的TDDFT的虚假电荷转移状态。我们的研究提供了准确的参考结果,并突出了$ GW $+BSE方法在模拟较大色素复合物中的潜力。
Bacteriochlorophyll and Chlorophyll molecules are crucial building blocks of the photosynthetic apparatus in bacteria, algae and plants. Embedded in transmembrane protein complexes, they are responsible for the primary processes of photosynthesis: excitation energy and charge transfer. Here, we use ab initio many body perturbation theory within the $GW$ approximation and Bethe-Salpeter equation (BSE) approach to calculate the electronic structure and optical excitations of Bacteriochlorophylls $a$, $b$, $c$, $d$ and $e$ and Chlorophylls $a$ and $b$. We systematically study the effects of structure, basis set size, partial self-consistency in $GW$, and the underlying exchange-correlation approximation, and compare our calculations with results from time-dependent density functional theory, multireference RASPT2 and experimental literature results. We find that optical excitations calculated with $GW$+BSE are in excellent agreement with experimental data, with an average deviation of less than 100\,meV for the first three bright excitations of the entire family of (Bacterio)chlorophylls. Contrary to state-of-the-art TDDFT with an optimally-tuned range-separated hybrid functional, this accuracy is achieved in a parameter-free approach. Moreover, $GW$+BSE predicts the energy differences between the low-energy excitations correctly, and eliminates spurious charge transfer states that TDDFT with (semi)local approximations is known to produce. Our study provides accurate reference results and highlights the potential of the $GW$+BSE approach for the simulation of larger pigment complexes.