论文标题

与任意顺序相互作用的最小复杂模型的贝叶斯推断

Bayesian Inference of Minimally Complex Models with Interactions of Arbitrary Order

论文作者

de Mulatier, Clélia, Marsili, Matteo

论文摘要

找到最能描述高维数据集的模型是一项艰巨的任务,更是如此,如果人们的目标是考虑数据的所有可能的高阶模式,而不是成对模型。对于二进制数据,我们表明,将搜索限制为一个简单模型的家族时,该任务将变得可行,我们称之为最小复杂的模型(MCMS)。 MCM是最大的熵模型,它们的相互作用是任意高阶的相互作用,该模型分组为最小复杂性的独立组成部分。它们在信息理论术语中很简单,这意味着它们只能符合某些类型的数据模式,因此很容易伪造。我们表明,仅限于这些模型的贝叶斯模型选择在计算上是可行的,并且具有许多优势。首先,可以在没有任何参数拟合的情况下有效地计算出合适性与复杂性的模型证据,从而可以对MCMS的空间进行非常快速的探索。其次,MCM家族在仪表转换下是不变的,可用于开发与表示无关的统计建模方法。对于小型系统(最多15个变量),将这两个结果结合起来,即使型号的数量已经很大,也可以在所有系统中选择最佳的MCM。对于较大的系统,我们建议简单的启发式方法在合理时期找到最佳的MCM。此外,可以在没有任何计算工作的情况下进行推理和采样。最后,由于MCM具有任何顺序的相互作用,因此它们可以揭示数据中重要的高阶依赖性的存在,从而提供了一种新的方法来探索复杂系统中的高阶依赖性。我们将我们的方法应用于综合数据和现实世界示例,说明了MCMS如何以简单的方式描绘变量之间的依赖关系结构,从而从数据中提取了对对称性的可伪造预测和数据的不变性。

Finding the model that best describes a high-dimensional dataset is a daunting task, even more so if one aims to consider all possible high-order patterns of the data, going beyond pairwise models. For binary data, we show that this task becomes feasible when restricting the search to a family of simple models, that we call Minimally Complex Models (MCMs). MCMs are maximum entropy models that have interactions of arbitrarily high order grouped into independent components of minimal complexity. They are simple in information-theoretic terms, which means they can only fit well certain types of data patterns and are therefore easy to falsify. We show that Bayesian model selection restricted to these models is computationally feasible and has many advantages. First, the model evidence, which balances goodness-of-fit against complexity, can be computed efficiently without any parameter fitting, enabling very fast explorations of the space of MCMs. Second, the family of MCMs is invariant under gauge transformations, which can be used to develop a representation-independent approach to statistical modeling. For small systems (up to 15 variables), combining these two results allows us to select the best MCM among all, even though the number of models is already extremely large. For larger systems, we propose simple heuristics to find optimal MCMs in reasonable times. Besides, inference and sampling can be performed without any computational effort. Finally, because MCMs have interactions of any order, they can reveal the presence of important high-order dependencies in the data, providing a new approach to explore high-order dependencies in complex systems. We apply our method to synthetic data and real-world examples, illustrating how MCMs portray the structure of dependencies among variables in a simple manner, extracting falsifiable predictions on symmetries and invariance from the data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源