论文标题

使用3D检测网络在自动乳房超声中进行计算机辅助肿瘤诊断

Computer-aided Tumor Diagnosis in Automated Breast Ultrasound using 3D Detection Network

论文作者

Yu, Junxiong, Chen, Chaoyu, Yang, Xin, Wang, Yi, Yan, Dan, Zhang, Jianxing, Ni, Dong

论文摘要

自动化乳房超声(ABUS)是一种用于乳腺癌检测和诊断的新型且有希望的成像方式,可以提供具有巨大诊断价值的直观3D信息和冠状平面信息。但是,手动筛查和诊断来自ABUS图像的肿瘤非常耗时,并且可能会发生异常的忽视。在这项研究中,我们提出了一个新型的两阶段3D检测网络,用于定位可疑病变区域,并将病变进一步分类为良性或恶性肿瘤。具体而言,我们建议一个3D检测网络,而不是经常使用的分割网络来定位ABUS图像中的病变,因此我们的网络可以充分利用ABUS图像中的空间上下文信息。新颖的相似性损失旨在有效地将病变与背景区分开。然后,使用分类网络将定位的病变确定为良性或恶性。采用了IOU平衡的分类损失来改善分类和本地化任务之间的相关性。我们网络的功效得到了418例145例良性肿瘤和273种恶性肿瘤患者的数据集的验证。实验表明,我们的网络具有1.23个假阳性(FPS)的敏感性为97.66%,并且曲线下的面积(AUC)值为0.8720。

Automated breast ultrasound (ABUS) is a new and promising imaging modality for breast cancer detection and diagnosis, which could provide intuitive 3D information and coronal plane information with great diagnostic value. However, manually screening and diagnosing tumors from ABUS images is very time-consuming and overlooks of abnormalities may happen. In this study, we propose a novel two-stage 3D detection network for locating suspected lesion areas and further classifying lesions as benign or malignant tumors. Specifically, we propose a 3D detection network rather than frequently-used segmentation network to locate lesions in ABUS images, thus our network can make full use of the spatial context information in ABUS images. A novel similarity loss is designed to effectively distinguish lesions from background. Then a classification network is employed to identify the located lesions as benign or malignant. An IoU-balanced classification loss is adopted to improve the correlation between classification and localization task. The efficacy of our network is verified from a collected dataset of 418 patients with 145 benign tumors and 273 malignant tumors. Experiments show our network attains a sensitivity of 97.66% with 1.23 false positives (FPs), and has an area under the curve(AUC) value of 0.8720.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源