论文标题
Witten-Reshetikhin-Turaev在Seifert歧管中的结
Witten-Reshetikhin-Turaev function for a knot in Seifert manifolds
论文作者
论文摘要
在本文中,要进行Seifert循环(即Seifert三序中的一个结),首先,我们给出了一个明确的功能$φ(q; n)$的家庭,其unity的特殊价值与Witten-Reshetikhin-Turaikhin-turaev invariants seifert novariants seifert novariants一起识别为seifert loop seiferl loop seifer loop for intectal sphere sphere for intectal sphere。其次,我们表明函数$φ(q; n)$满足$ q $ - 差异方程,其经典极限与Seifert Loop的字符品种的组成部分相吻合。第三,我们从复兴分析的角度对函数$φ(q; n)$进行解释。
In this paper, for a Seifert loop (i.e., a knot in a Seifert three-manifold), first we give a family of an explicit function $Φ(q; N)$ whose special values at roots of unity are identified with the Witten-Reshetikhin-Turaev invariants of the Seifert loop for the integral homology sphere. Second, we show that the function $Φ(q; N)$ satisfies a $q$-difference equation whose classical limit coincides with a component of the character varieties of the Seifert loop. Third, we give an interpretation of the function $Φ(q; N)$ from the view point of the resurgent analysis.