论文标题

使用图基于图案的图形卷积多层网络对图的表示形式学习

Representation Learning of Graphs Using Graph Convolutional Multilayer Networks Based on Motifs

论文作者

Li, Xing, Wei, Wei, Feng, Xiangnan, Liu, Xue, Zheng, Zhiming

论文摘要

图形结构是一种常用的数据存储模式,事实证明,图中节点的低维嵌入式表示在各种典型任务中非常有用,例如节点分类,链接预测等。但是,大多数现有方法始于图中的二元关系(即,边缘),并且没有利用较高的局部局部结构(即,图形)(即,图形)(即,图形)(即,图形)。在这里,我们提出了MGCMN-利用节点特征信息和图表的较高局部结构的新型框架,以有效地生成以前看不见的数据的节点嵌入。通过研究,我们发现不同类型的网络具有不同的关键主题。在引用网络和社交网络数据集的大量实验中,已经证明了我们方法比基线方法的优势。同时,揭示了分类精度的增加与聚类系数之间的正相关。人们认为,使用高阶结构信息可以真正表现出网络的潜力,这将大大提高图形神经网络的学习效率并促进全新的学习模式建立。

The graph structure is a commonly used data storage mode, and it turns out that the low-dimensional embedded representation of nodes in the graph is extremely useful in various typical tasks, such as node classification, link prediction , etc. However, most of the existing approaches start from the binary relationship (i.e., edges) in the graph and have not leveraged the higher order local structure (i.e., motifs) of the graph. Here, we propose mGCMN -- a novel framework which utilizes node feature information and the higher order local structure of the graph to effectively generate node embeddings for previously unseen data. Through research we have found that different types of networks have different key motifs. And the advantages of our method over the baseline methods have been demonstrated in a large number of experiments on citation network and social network datasets. At the same time, a positive correlation between increase of the classification accuracy and the clustering coefficient is revealed. It is believed that using high order structural information can truly manifest the potential of the network, which will greatly improve the learning efficiency of the graph neural network and promote a brand-new learning mode establishment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源