论文标题
基于稀疏的超级分辨率多层超声阵列成像
Sparse Based Super Resolution Multilayer Ultrasonic Array Imaging
论文作者
论文摘要
在本文中,我们使用Huygens原理对超声成像中的信号传播效应进行建模,并使用此模型来开发基于浸入水中的两层物体的基于稀疏信号表示技术。依靠感兴趣的图像稀疏的事实,我们将基于阵列的成像问题施加了一个稀疏信号恢复问题并开发了两种类型的成像方法,一种方法仅使用一个传感器来阐明感兴趣的区域{并且在这种情况下,该系统被建模为单个输入多个输出(SIMO)系统。第二种方法依靠所有传感器将超声波传输到正在测试的材料中,在这种情况下,将系统建模为多重输入多重输出(MIMO)系统}。我们将工作进一步扩展到一个场景,即在测试的对象中波的传播速度不确定。 {我们讨论了不同的技术,例如基于贪婪的算法以及$ \ ell_1 $ - 基于基于最小化的方法来求解基于提出的稀疏信号表示方法。我们对基于SIMO和MIMO案例的基于$ \ ell_1 $ norm最小化方法的计算复杂性进行评估。我们进一步指出了基于贪婪的算法的$ \ ell_1 $ -norm最小化方法的优势。然后,我们对基于贪婪的方法以及$ \ ell_1 $ norm最小化技术的错误进行了全面分析。该分析利用了来自现代分析的两个强大分支的工具,\ emph {Banach Spaces中的局部分析}和\ Emph {MEATH的浓度}}。我们最终将方法应用于从浸入水中的实心测试样品中收集的实验数据,并表明基于信号恢复的技术的表现优于文献中可用的常规方法。
In this paper, we model the signal propagation effect in ultrasonic imaging using Huygens principle and use this model to develop sparse signal representation based imaging techniques for a two-layer object immersed in water. Relying on the fact that the image of interest is sparse, we cast such an array based imaging problem as a sparse signal recovery problem and develop two types of imaging methods, one method uses only one transducer to illuminate the region of interest {and for this case the system is modeled as a single input multiple output (SIMO) system. The second method relies on all transducers to transmit ultrasonic waves into the material under test and in this case the system is modeled as a multiple input multiple output (MIMO) system}. We further extend our work to a scenario where the propagation velocity of the wave in the object under test is not known precisely. {We discuss different techniques such as greedy based algorithms as well as $\ell_1$-norm minimization based approach to solve the proposed sparse signal representation based method. We give an assessment of the computational complexity of the $\ell_1$-norm minimization based approach for the SIMO and the MIMO cases. We further point out the superiority of the $\ell_1$-norm minimization based approach over the greedy based algorithms. Then we give a comprehensive analysis of error for both the greedy based approaches as well as the $\ell_1$-norm minimization based technique for both the SIMO and the MIMO cases. The analysis utilizes tools from two powerful branches of modern analysis, \emph{local analysis in Banach spaces} and \emph{concentration of measure}}. We finally apply our methods to experimental data gathered from a solid test sample immersed in water and show that sparse signal recovery based techniques outperform the conventional methods available in the literature.