论文标题
有效的张量分解
Efficient Tensor Decomposition
论文作者
论文摘要
本章研究将张量分解为组成等级的总和一个张量的问题。虽然张量分解在设计学习算法和数据分析方面非常有用,但它们在最坏情况下是NP-HARD。我们将看到如何在轻度假设下设计具有可证明保证的有效算法,并使用超越最差的框架(如平滑分析)。
This chapter studies the problem of decomposing a tensor into a sum of constituent rank one tensors. While tensor decompositions are very useful in designing learning algorithms and data analysis, they are NP-hard in the worst-case. We will see how to design efficient algorithms with provable guarantees under mild assumptions, and using beyond worst-case frameworks like smoothed analysis.