论文标题

通过曲折图和路径空间措施对图的谐波分析

Harmonic analysis on graphs via Bratteli diagrams and path-space measures

论文作者

Bezuglyi, Sergey, Jorgensen, Palle E. T.

论文摘要

在过去的十年中,图形的谐波分析中的进步蓬勃发展。它们位于图理论的十字路口和诸如图形拉普拉斯人,马尔可夫过程和相关边界等分析工具,路径空间,谐波分析,动力学和尾部不变的测量方面的分析。在Bratteli图的特殊情况下,我们目前的重点将是在最新的特殊情况下的动机,我们目前的重点将放在这些图形系统$ g $上,该属性是顶点$ v $的集合和边缘$ e $ en n script级结构。离散级别的选择又导致了新的和有趣的离散时间随机步行模型。 我们的主要扩展名(大大扩展了对Bratteli图的较早分析),这就是当前考虑的图形系统中的级别$ g $中的水平是标准的度量空间时。因此,在量度框架中,我们必须处理过渡概率系统,而不是发病率矩阵(对于传统的Bratteli图)。 该论文分为两个部分,(i)当级别是可计数的离散系统时的特殊情况,以及(ii)(非原子)可测量类别,即,当每个级别是具有标准Borel结构的规定的测量空间时。对这两种案例的研究部分是由最新的图形限制结果进行的。我们的结果取决于对希尔伯特领域运营商的某些双重系统的新分析。具体来说,每个级别的一个双重操作系统系统。在两种情况下,我们都证明了新的结果,(i)和(ii);我们进一步强调了两种情况下涉及的结果和技术之间的相似性和差异。

The past decade has seen a flourishing of advances in harmonic analysis of graphs. They lie at the crossroads of graph theory and such analytical tools as graph Laplacians, Markov processes and associated boundaries, analysis of path-space, harmonic analysis, dynamics, and tail-invariant measures. Motivated by recent advances for the special case of Bratteli diagrams, our present focus will be on those graph systems $G$ with the property that the sets of vertices $V$ and edges $E$ admit discrete level structures. A choice of discrete levels in turn leads to new and intriguing discrete-time random-walk models. Our main extension (which greatly expands the earlier analysis of Bratteli diagrams) is the case when the levels in the graph system $G$ under consideration are now allowed to be standard measure spaces. Hence, in the measure framework, we must deal with systems of transition probabilities, as opposed to incidence matrices (for the traditional Bratteli diagrams). The paper is divided into two parts, (i) the special case when the levels are countable discrete systems, and (ii) the (non-atomic) measurable category, i.e., when each level is a prescribed measure space with standard Borel structure. The study of the two cases together is motivated in part by recent new results on graph-limits. Our results depend on a new analysis of certain duality systems for operators in Hilbert space; specifically, one dual system of operator for each level. We prove new results in both cases, (i) and (ii); and we further stress both similarities, and differences, between results and techniques involved in the two cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源