论文标题
跨合奏的多参数分布的目视分析
Visual Analysis of Multi-Parameter Distributions across Ensembles
论文作者
论文摘要
对于多参数空间中的数据点集合,我们提出了一种视觉分析技术,以选择参数值的代表性分布,并分析该分布在所有集合成员中的代表性。通过平行坐标图可视化代表合奏成员中的多参数群集,以提供初始分布,并让域专家交互选择相关参数和值范围。由于价值范围的工会在参数空间中选择了超级立方体,因此这些工会中的数据点不一定包含在集群中。通过使用多参数KD-Tree进一步完善所选参数范围,结合对精制数据点的协方差分析,可以获得多参数空间中的紧密分区,并获得了减少错误选择点的数量。为了评估整个合奏中选定的多参数分布的代表性,提供了每人小提琴图的并排视图。我们提出了小提琴图的修改,以同时显示多参数分布,并研究有效传达多参数分布中相似性的视觉设计。在链接的空间视图中,用户可以通过基于间隔的Isosurface Raycasting分析和比较不同集合成员中所选点的空间分布。在两个现实世界的应用程序案例中,我们展示了如何使用我们的方法来分析3D字段集合的多参数分布。
For an ensemble of data points in a multi-parameter space, we present a visual analytics technique to select a representative distribution of parameter values, and analyse how representative this distribution is in all ensemble members. A multi-parameter cluster in a representative ensemble member is visualized via a parallel coordinates plot, to provide initial distributions and let domain experts interactively select relevant parameters and value ranges. Since unions of value ranges select hyper-cubes in parameter space, data points in these unions are not necessarily contained in the cluster. By using a multi-parameter kD-tree to further refine the selected parameter ranges, in combination with a covariance analysis of refined sets of data points, a tight partition in multi-parameter space with reduced number of falsely selected points is obtained. To assess the representativeness of the selected multi-parameter distribution across the ensemble, a linked side-by-side view of per-member violin plots is provided. We propose modifications of violin plots to show multi-parameter distributions simultaneously, and investigate the visual design that effectively conveys (dis-)similarities in multi-parameter distributions. In a linked spatial view, users can analyse and compare the spatial distribution of selected points in different ensemble members via interval-based isosurface raycasting. In two real-world application cases we show how our approach is used to analyse the multi-parameter distributions across an ensemble of 3D fields.