论文标题

学习者的困境:IoT设备在协作深度学习中的培训策略

Learner's Dilemma: IoT Devices Training Strategies in Collaborative Deep Learning

论文作者

Gupta, Deepti, Kayode, Olumide, Bhatt, Smriti, Gupta, Maanak, Tosun, Ali Saman

论文摘要

随着物联网(IoT)和Mo-Bile Edge计算的增长,数十亿个智能设备相互关联,以开发在包括智能家居,医疗保健和智能制造在内的各个领域中使用的应用程序。深度学习已在各种物联网应用中广泛使用,这些应用需要大量的模型培训数据。由于隐私要求,智能物联网设备不会向远程第三方发布数据以供其使用。为了克服这个问题,深度学习的协作方法(也称为协作深度学习(CDL))在很大程度上被用于数据驱动的应用程序。这种方法使多个边缘物联网设备可以在移动边缘设备上局部训练其模型。在本文中,我们通过使用游戏理论模型来分析移动边缘设备的行为来解决CDL中的IoT设备培训问题,在该模型中,每个移动边缘设备旨在同时限制参与CDL的开销,以最大程度地提高其本地模型的准确性。我们分析了Ann-player静态游戏模型中的NASH平衡。我们进一步提出了一种基于集群的新型公平策略,以大致解决CDL游戏以实施移动边缘设备进行合作。我们在现实世界中的智能家庭部署中的实验结果和评估分析表明,80%的移动边缘设备已准备好在CDL中进行配合,而其中20%的移动设备没有协作培训本地模型。

With the growth of Internet of Things (IoT) and mo-bile edge computing, billions of smart devices are interconnected to develop applications used in various domains including smart homes, healthcare and smart manufacturing. Deep learning has been extensively utilized in various IoT applications which require huge amount of data for model training. Due to privacy requirements, smart IoT devices do not release data to a remote third party for their use. To overcome this problem, collaborative approach to deep learning, also known as Collaborative DeepLearning (CDL) has been largely employed in data-driven applications. This approach enables multiple edge IoT devices to train their models locally on mobile edge devices. In this paper,we address IoT device training problem in CDL by analyzing the behavior of mobile edge devices using a game-theoretic model,where each mobile edge device aims at maximizing the accuracy of its local model at the same time limiting the overhead of participating in CDL. We analyze the Nash Equilibrium in anN-player static game model. We further present a novel cluster-based fair strategy to approximately solve the CDL game to enforce mobile edge devices for cooperation. Our experimental results and evaluation analysis in a real-world smart home deployment show that 80% mobile edge devices are ready to cooperate in CDL, while 20% of them do not train their local models collaboratively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源