论文标题

奇妙的嵌入以及如何对齐它们:在多购物场景中的零弹性推理

Fantastic Embeddings and How to Align Them: Zero-Shot Inference in a Multi-Shop Scenario

论文作者

Bianchi, Federico, Tagliabue, Jacopo, Yu, Bingqing, Bigon, Luca, Greco, Ciro

论文摘要

本文解决了利用多个嵌入式空间进行多购物个性化的挑战,这证明了通过在没有手动干预的情况下将购物意图从一个网站转移到另一个网站,可以证明零拍摄的推理。我们详细介绍了一条机器学习管道,以训练和优化商店内的嵌入,并通过其他定性见解支持定量发现。然后,我们转向更艰巨的任务,即在商店中使用学到的嵌入式:如果来自不同商店的产品生活在同一矢量空间中,则用户意图(如该空间中的地区所示),可以在网站上以零拍的方式传输。我们建议和基准的无监督和监督方法在嵌入空间之间“旅行”,每个方法都有自己对数据数量和质量的假设。我们表明,通过使用两个下游任务,事件预测和类型预先建议的建议,可以通过测试共享嵌入空间来进行零拍个性化。最后,我们策划了一个跨购物中心的匿名嵌入数据集,以促进对这一重要业务方案的包容性讨论。

This paper addresses the challenge of leveraging multiple embedding spaces for multi-shop personalization, proving that zero-shot inference is possible by transferring shopping intent from one website to another without manual intervention. We detail a machine learning pipeline to train and optimize embeddings within shops first, and support the quantitative findings with additional qualitative insights. We then turn to the harder task of using learned embeddings across shops: if products from different shops live in the same vector space, user intent - as represented by regions in this space - can then be transferred in a zero-shot fashion across websites. We propose and benchmark unsupervised and supervised methods to "travel" between embedding spaces, each with its own assumptions on data quantity and quality. We show that zero-shot personalization is indeed possible at scale by testing the shared embedding space with two downstream tasks, event prediction and type-ahead suggestions. Finally, we curate a cross-shop anonymized embeddings dataset to foster an inclusive discussion of this important business scenario.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源