论文标题

我的动议告诉我你的姿势:一个自我监督的单眼3D车辆探测器

What My Motion tells me about Your Pose: A Self-Supervised Monocular 3D Vehicle Detector

论文作者

Picron, Cédric, Chakravarty, Punarjay, Roussel, Tom, Tuytelaars, Tinne

论文摘要

从单眼摄像机数据中观察到的车辆相对于自动驾驶汽车(AV)的方向的估计是估计其6 DOF姿势的重要组成部分。目前,基于深度学习的解决方案用于在此观察到的车辆周围放置3D边界框是数据饥饿,并且不能很好地概括。在本文中,我们证明了单眼视觉探光仪在参考域上预先训练的方向估计的模型的自我监督微调。具体而言,在从虚拟数据集(Vkitti)过渡到Nuscenes时,我们恢复了完全监督方法的性能的70%。随后,我们演示了一个基于优化的单程3D边界框检测器,而无需昂贵的标记数据,就可以在自我监管的车辆方向估计器之上构建。这允许3D车辆检测算法是从现有商用车机队的大量单眼相机数据中进行自训练的。

The estimation of the orientation of an observed vehicle relative to an Autonomous Vehicle (AV) from monocular camera data is an important building block in estimating its 6 DoF pose. Current Deep Learning based solutions for placing a 3D bounding box around this observed vehicle are data hungry and do not generalize well. In this paper, we demonstrate the use of monocular visual odometry for the self-supervised fine-tuning of a model for orientation estimation pre-trained on a reference domain. Specifically, while transitioning from a virtual dataset (vKITTI) to nuScenes, we recover up to 70% of the performance of a fully supervised method. We subsequently demonstrate an optimization-based monocular 3D bounding box detector built on top of the self-supervised vehicle orientation estimator without the requirement of expensive labeled data. This allows 3D vehicle detection algorithms to be self-trained from large amounts of monocular camera data from existing commercial vehicle fleets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源