论文标题

跟踪情绪:基于多层预测错误动态的内在动机

Tracking Emotions: Intrinsic Motivation Grounded on Multi-Level Prediction Error Dynamics

论文作者

Schillaci, Guido, Ciria, Alejandra, Lara, Bruno

论文摘要

认知代理如何决定要学习的相关信息是什么以及如何选择目标以获取这些知识?认知剂需要动机以执行任何行动。我们讨论时会出现情绪,当经历了预期和实际进度率之间的差异。因此,对预测错误动态的跟踪与情绪有着紧密的关系。在这里,我们建议跟踪预测错误动态,使人造代理人具有内在的动机来寻求新的体验,但被限制在产生可减少的预测错误的人。我们提出了一种内在的动机结构,从而产生了对自我创造和动态目标产生的行为,并通过多级别的预测动态进行剥削和勘探之间的剥削和探索之间的平衡和勘探之间的平衡。这种新的体系结构调节了探索噪声,并根据学习系统整体性能的动态来利用计算资源。此外,它为目标选择的时间动态建立了可能的解决方案。此处介绍的实验结果表明,这种体系结构的表现优于内在动机方法,在这些方法中,探索性噪音和目标是固定的,并应用了贪婪的策略。

How do cognitive agents decide what is the relevant information to learn and how goals are selected to gain this knowledge? Cognitive agents need to be motivated to perform any action. We discuss that emotions arise when differences between expected and actual rates of progress towards a goal are experienced. Therefore, the tracking of prediction error dynamics has a tight relationship with emotions. Here, we suggest that the tracking of prediction error dynamics allows an artificial agent to be intrinsically motivated to seek new experiences but constrained to those that generate reducible prediction error.We present an intrinsic motivation architecture that generates behaviors towards self-generated and dynamic goals and that regulates goal selection and the balance between exploitation and exploration through multi-level monitoring of prediction error dynamics. This new architecture modulates exploration noise and leverages computational resources according to the dynamics of the overall performance of the learning system. Additionally, it establishes a possible solution to the temporal dynamics of goal selection. The results of the experiments presented here suggest that this architecture outperforms intrinsic motivation approaches where exploratory noise and goals are fixed and a greedy strategy is applied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源