论文标题

Bitrap:双向步行轨迹预测,具有多模式目标估计

BiTraP: Bi-directional Pedestrian Trajectory Prediction with Multi-modal Goal Estimation

论文作者

Yao, Yu, Atkins, Ella, Johnson-Roberson, Matthew, Vasudevan, Ram, Du, Xiaoxiao

论文摘要

人行驶轨迹预测是机器人应用中的重要任务,例如自动驾驶和机器人导航。最先进的轨迹预测器使用带有复发神经网络(RNN)的条件变分自动编码器(CVAE)来编码观察到的轨迹和解码多模式的未来轨迹。这个过程可能会在长期预测范围内累积错误(> = 2秒)。本文介绍了基于CVAE的目标条件双向多模式轨迹预测方法。 BitRap估计轨迹的目标(终点),并引入了一种新型的双向解码器,以提高长期轨迹预测的准确性。广泛的实验表明,比特映射概括到第一人称视图(FPV)和Bird's-eye View(BEV)方案,并且胜过最先进的结果约为10-50%。我们还表明,CVAE中非参数与参数目标模型的不同选择直接影响预测的多模式轨迹分布。这些结果为机器人应用(例如避免碰撞和导航系统)提供了有关轨迹预测设计的指导。

Pedestrian trajectory prediction is an essential task in robotic applications such as autonomous driving and robot navigation. State-of-the-art trajectory predictors use a conditional variational autoencoder (CVAE) with recurrent neural networks (RNNs) to encode observed trajectories and decode multi-modal future trajectories. This process can suffer from accumulated errors over long prediction horizons (>=2 seconds). This paper presents BiTraP, a goal-conditioned bi-directional multi-modal trajectory prediction method based on the CVAE. BiTraP estimates the goal (end-point) of trajectories and introduces a novel bi-directional decoder to improve longer-term trajectory prediction accuracy. Extensive experiments show that BiTraP generalizes to both first-person view (FPV) and bird's-eye view (BEV) scenarios and outperforms state-of-the-art results by ~10-50%. We also show that different choices of non-parametric versus parametric target models in the CVAE directly influence the predicted multi-modal trajectory distributions. These results provide guidance on trajectory predictor design for robotic applications such as collision avoidance and navigation systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源