论文标题

单位:普遍近似点过程强度

UNIPoint: Universally Approximating Point Processes Intensities

论文作者

Soen, Alexander, Mathews, Alexander, Grixti-Cheng, Daniel, Xie, Lexing

论文摘要

点过程是随着时间的推移描述事件的有用数学工具,因此有许多代表和学习的方法。一个值得注意的开放问题是如何精确描述点过程模型的灵活性以及是否存在可以代表所有点过程的通用模型。我们的工作弥合了这个差距。为了关注点过程的广泛使用事件强度函数表示,我们提供了一个证据,表明一类可学习的功能可以普遍近似任何有效的强度函数。该证明使用传输函数,非负连续函数的均匀密度连接了众所周知的石材 - 网络定理,使用传输函数,零件连续函数的参数的表述以及作为势力系统的参数的表述,以及复发的神经网络实施,用于捕获动力学。使用这些见解,我们设计和实施Unipoint,这是一种新型的神经点过程模型,使用复发的神经网络在每个事件时使用基本函数的参数总和。对合成和现实世界数据集的评估表明,这种简单的表示的性能要比Hawkes过程变体和更复杂的基于神经网络的方法更好。我们希望这个结果将为选择和调整模型提供实用的基础,并在表示复杂性和可学习性方面推动理论工作。

Point processes are a useful mathematical tool for describing events over time, and so there are many recent approaches for representing and learning them. One notable open question is how to precisely describe the flexibility of point process models and whether there exists a general model that can represent all point processes. Our work bridges this gap. Focusing on the widely used event intensity function representation of point processes, we provide a proof that a class of learnable functions can universally approximate any valid intensity function. The proof connects the well known Stone-Weierstrass Theorem for function approximation, the uniform density of non-negative continuous functions using a transfer functions, the formulation of the parameters of a piece-wise continuous functions as a dynamic system, and a recurrent neural network implementation for capturing the dynamics. Using these insights, we design and implement UNIPoint, a novel neural point process model, using recurrent neural networks to parameterise sums of basis function upon each event. Evaluations on synthetic and real world datasets show that this simpler representation performs better than Hawkes process variants and more complex neural network-based approaches. We expect this result will provide a practical basis for selecting and tuning models, as well as furthering theoretical work on representational complexity and learnability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源