论文标题

两种大小的概率改变群集算法

Two-size Probability-Changing Cluster Algorithm

论文作者

Surungan, Tasrief, Okabe, Yutaka

论文摘要

我们提出了一种自我适应的蒙特卡洛方法,通过在相同温度下模拟两个不同大小的系统来自动确定临界温度。通过检查两个系统尺寸的相关比的短时平均值,温度升高或降低。使用负反馈机制可实现临界温度,并且可以精确计算临界温度附近的热平均值。所提出的方法是治疗二阶相变,一阶相变和berezinskii-kosterlitz-在相等基础上的无与伦比的过渡的一般方法。

We propose a self-adapted Monte Carlo approach to automatically determine the critical temperature by simulating two systems with different sizes at the same temperature. The temperature is increased or decreased by checking the short-time average of the correlation ratios of the two system sizes. The critical temperature is achieved using the negative feedback mechanism, and the thermal average near the critical temperature can be calculated precisely. The proposed approach is a general method to treat second-order phase transition, first-order phase transition, and Berezinskii-Kosterlitz-Thouless transition on the equal footing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源