论文标题
广义的Carleson嵌入加权外部措施空间
Generalized Carleson Embeddings into Weighted Outer Measure Spaces
论文作者
论文摘要
我们证明了从$ l^p(\ mathbb {r},w)$转换为$ 2 <p <\ p <\ infty $和a_ {p/2} $中的$ 2 <p <\ iffty $和stright $ w \ forture carleson嵌入。这项工作是ARXIV中相应的Lebesgue结果的加权扩展:1309.0945V3,并在ARXIV中概括了类似的结果:1207.1150。本文中的证明依赖于$ l^2 $限制的估计,这是几何形状,可能具有独立感兴趣的波数据包变换。
We prove generalized Carleson embeddings for the continuous wave packet transform from $L^p(\mathbb{R},w)$ into an outer $L^p$ space for $2< p < \infty$ and weight $w \in A_{p/2}$. This work is a weighted extension of the corresponding Lebesgue result in arXiv:1309.0945v3 and generalizes a similar result in arXiv:1207.1150. The proof in this article relies on $L^2$ restriction estimates for the wave packet transform which are geometric and may be of independent interest.