论文标题
更轻松的人:用于人类在肾脏病理深度学习的开源工具
EasierPath: An Open-source Tool for Human-in-the-loop Deep Learning of Renal Pathology
论文作者
论文摘要
在过去的几年中,肾脏科学中的大量形态表型研究已经出现,旨在发现临床和成像表型之间的隐藏规律性。基于深度学习的图像分析在很大程度上可以在高分辨率全幻灯片图像(WSI)上提取稀疏的靶向物体(例如肾小球),从而在很大程度上启发了此类研究。但是,需要使用劳动密集型高质量注释进行培训,理想情况下是病理学家标记的。受到最近“人类在循环”策略的启发,我们开发了更简单的Paths,这是一种开源工具,可以整合人类医生和深度学习算法,以有效的大规模病理图像量化为循环。使用更轻松的人,医生能够(1)自适应地优化深度学习对象检测结果的回忆和精度,(2)无缝地支持深度学习成果,使用我们的易于改变医生的用户习惯,使用我们的易于使用的image cope软件来精炼,而无需更改医生的用户习惯,并且(3)使用用户定义的类别管理和表型。作为用户更轻松的案例,我们介绍了以有效的人体方式(具有两个循环)以有效的人类方式策划大型肾小球的过程。从实验中,更容易的人节省了57%的注释努力,以在第二个循环期间策划8,833个肾小球。同时,肾小球检测的平均精度从0.504到0.620。更简单的路径软件已被发布为开源,以实现大规模的肾小球原型。代码可以在https://github.com/yuankaihuo/easierpath中找到
Considerable morphological phenotyping studies in nephrology have emerged in the past few years, aiming to discover hidden regularities between clinical and imaging phenotypes. Such studies have been largely enabled by deep learning based image analysis to extract sparsely located targeting objects (e.g., glomeruli) on high-resolution whole slide images (WSI). However, such methods need to be trained using labor-intensive high-quality annotations, ideally labeled by pathologists. Inspired by the recent "human-in-the-loop" strategy, we developed EasierPath, an open-source tool to integrate human physicians and deep learning algorithms for efficient large-scale pathological image quantification as a loop. Using EasierPath, physicians are able to (1) optimize the recall and precision of deep learning object detection outcomes adaptively, (2) seamlessly support deep learning outcomes refining using either our EasierPath or prevalent ImageScope software without changing physician's user habit, and (3) manage and phenotype each object with user-defined classes. As a user case of EasierPath, we present the procedure of curating large-scale glomeruli in an efficient human-in-the-loop fashion (with two loops). From the experiments, the EasierPath saved 57 % of the annotation efforts to curate 8,833 glomeruli during the second loop. Meanwhile, the average precision of glomerular detection was leveraged from 0.504 to 0.620. The EasierPath software has been released as open-source to enable the large-scale glomerular prototyping. The code can be found in https://github.com/yuankaihuo/EasierPath