论文标题

多任务回归的多任务学习:适用于发光感应

Multi-Task Learning for Multi-Dimensional Regression: Application to Luminescence Sensing

论文作者

Umberto, Michelucci, Venturini, Francesca

论文摘要

物理中非线性回归的经典方法是采用一个数学模型,描述了从一组独立变量中描述因变量的功能依赖性,然后使用非线性拟合算法,提取模型中使用的参数。特别具有挑战性的是实际系统,其特征是与特定组件(如电子或光学零件)相关的几个其他影响因素。在这种情况下,为了使模型重现数据,凭经验确定的术语是内置的,以补偿无法通过构造无法建模的事物建模的东西。解决此问题的一种新方法是使用神经网络,尤其是具有足够数量的隐藏层和适当数量的输出神经元的馈送前架构,每个人都负责预测所需的变量。不幸的是,馈送前向神经网络(FFNN)通常应用于多维回归问题时的效率较低,即当要求它们同时预测以不同方式取决于输入数据集的多个变量。为了解决这个问题,我们提出了多任务学习(MTL)体系结构。这些特征在于特定于任务的多个分支,这些分支具有输入一组层的输出。为了证明这种方法在多维回归中的功能,该方法应用于发光感应。在这里,MTL体系结构允许通过一组测量值预测多个参数,即氧浓度和温度。

The classical approach to non-linear regression in physics, is to take a mathematical model describing the functional dependence of the dependent variable from a set of independent variables, and then, using non-linear fitting algorithms, extract the parameters used in the modeling. Particularly challenging are real systems, characterized by several additional influencing factors related to specific components, like electronics or optical parts. In such cases, to make the model reproduce the data, empirically determined terms are built-in the models to compensate for the impossibility of modeling things that are, by construction, impossible to model. A new approach to solve this issue is to use neural networks, particularly feed-forward architectures with a sufficient number of hidden layers and an appropriate number of output neurons, each responsible for predicting the desired variables. Unfortunately, feed-forward neural networks (FFNNs) usually perform less efficiently when applied to multi-dimensional regression problems, that is when they are required to predict simultaneously multiple variables that depend from the input dataset in fundamentally different ways. To address this problem, we propose multi-task learning (MTL) architectures. These are characterized by multiple branches of task-specific layers, which have as input the output of a common set of layers. To demonstrate the power of this approach for multi-dimensional regression, the method is applied to luminescence sensing. Here the MTL architecture allows predicting multiple parameters, the oxygen concentration and the temperature, from a single set of measurements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源