论文标题
学习运动预测的车道图表
Learning Lane Graph Representations for Motion Forecasting
论文作者
论文摘要
我们提出了一个运动预测模型,该模型利用了新颖的结构化图表示以及参与者图相互作用。我们没有将矢量化映射编码为栅格图像,而是从原始地图数据构造了泳道图,以明确保留地图结构。为了捕获泳道图的复杂拓扑和远距离依赖性,我们提出了LaneGCN,该LaneGCN扩展了图形卷积,并具有多个邻接矩阵和沿车道扩张。为了捕获参与者与地图之间的复杂相互作用,我们利用了一个由四种类型的相互作用,参与者到车道,车道到车道,车道,车道到演员和演员对角色组成的融合网络。由LaneGCN和Actor-Map相互作用提供支持,我们的模型能够预测准确和现实的多模式轨迹。我们的方法极大地表现出了大规模ardoverse运动预测基准的最先进。
We propose a motion forecasting model that exploits a novel structured map representation as well as actor-map interactions. Instead of encoding vectorized maps as raster images, we construct a lane graph from raw map data to explicitly preserve the map structure. To capture the complex topology and long range dependencies of the lane graph, we propose LaneGCN which extends graph convolutions with multiple adjacency matrices and along-lane dilation. To capture the complex interactions between actors and maps, we exploit a fusion network consisting of four types of interactions, actor-to-lane, lane-to-lane, lane-to-actor and actor-to-actor. Powered by LaneGCN and actor-map interactions, our model is able to predict accurate and realistic multi-modal trajectories. Our approach significantly outperforms the state-of-the-art on the large scale Argoverse motion forecasting benchmark.