论文标题

宇宙剪切中的持续同源性:拓扑数据分析的约束参数

Persistent homology in cosmic shear: constraining parameters with topological data analysis

论文作者

Heydenreich, Sven, Brück, Benjamin, Harnois-Déraps, Joachim

论文摘要

近年来,宇宙剪切物已成为研究我们宇宙中物质统计分布的强大工具。除了标准的两点相关函数外,峰值计数统计的几种替代方法还提供竞争结果。在这里,我们表明,与同一数据集中的以前方法相比,持久的同源性是一种拓扑数据分析的工具,可以提取更多的宇宙学信息。为此,我们使用持续的贝蒂数量来有效地总结了弱透镜孔径质量图的完整拓扑结构。该方法可以看作是峰值计数统计数据的扩展,在其中我们还捕获了有关最大值周围环境的信息。我们首先在对儿童+Viking-450数据的模拟分析中证明了表现:我们从$ W $ CDM $ n $ n $模拟的套件中提取Betti功能,并使用这些功能来训练高斯流程模拟器,以提供快速的模型预测;接下来,我们对独立模拟数据进行了马尔可夫链蒙特卡洛分析,以推断宇宙学参数及其不确定性。在比较结果时,我们会恢复输入宇宙学,并在$ S_8 \equivσ_8\ sqrt {ω__\ Mathrm {M} /0.3} $上获得约束功率,比峰值计数统计数据更高5%。对100°$^2 $类似欧几里得的模拟进行相同的分析,我们能够改善$ s_8 $和$ω__\ MATHRM {M MATHRM {M MATHRM {M MATHRM {M MATHRM {M MATHRM {M} $的约束,同时将某些脱水率在$ s_8 $和状态的暗能量之间进行破坏。据我们所知,这里介绍的方法是用镜头数据来限制宇宙学参数的最强大的拓扑工具。

In recent years, cosmic shear has emerged as a powerful tool to study the statistical distribution of matter in our Universe. Apart from the standard two-point correlation functions, several alternative methods like peak count statistics offer competitive results. Here we show that persistent homology, a tool from topological data analysis, can extract more cosmological information than previous methods from the same dataset. For this, we use persistent Betti numbers to efficiently summarise the full topological structure of weak lensing aperture mass maps. This method can be seen as an extension of the peak count statistics, in which we additionally capture information about the environment surrounding the maxima. We first demonstrate the performance in a mock analysis of the KiDS+VIKING-450 data: we extract the Betti functions from a suite of $w$CDM $N$-body simulations and use these to train a Gaussian process emulator that provides rapid model predictions; we next run a Markov-Chain Monte Carlo analysis on independent mock data to infer the cosmological parameters and their uncertainty. When comparing our results, we recover the input cosmology and achieve a constraining power on $S_8 \equiv σ_8\sqrt{Ω_\mathrm{m}/0.3}$ that is 5% tighter than that of peak count statistics. Performing the same analysis on 100 deg$^2$ of Euclid-like simulations, we are able to improve the constraints on $S_8$ and $Ω_\mathrm{m}$ by 18% and 10%, respectively, while breaking some of the degeneracy between $S_8$ and the dark energy equation of state. To our knowledge, the methods presented here are the most powerful topological tools to constrain cosmological parameters with lensing data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源