论文标题

完全分散的基于联邦学习的界限设计无人机通信

Fully Decentralized Federated Learning Based Beamforming Design for UAV Communications

论文作者

Xiao, Yue, Ye, Yu, Huang, Shaocheng, Hao, Li, Ma, Zheng, Xiao, Ming, Mumtaz, Shahid

论文摘要

为了处理物联网(IoT)时代的数据爆炸,研究分散网络很有趣,旨在放松中央服务器的负担并保持数据隐私。在这项工作中,我们开发了一个完全分散的联合学习(FL)框架,并具有不精确的随机并行随机步行交替的乘数方法(ISPW-ADMM)。与当前最新的ISPW-ADMM相比,执行更有效的沟通效率和增强的隐私保护,可以部分免疫随时间变化的动态网络和随机数据收集的影响,同时仍处于快速收敛的同时。随机梯度和偏见的一阶矩估计的好处,可以将所提出的框架应用于任何分散的FL任务,而不是随着时间的变化图。因此,为了进一步证明这种框架在提供快速收敛,高通信效率和系统鲁棒性方面的实用性,我们研究了在无人机通信中用于稳健波束成形(BF)设计的基于极端学习机器(ELM)的FL模型,如数值模拟所证实的。

To handle the data explosion in the era of internet of things (IoT), it is of interest to investigate the decentralized network, with the aim at relaxing the burden to central server along with keeping data privacy. In this work, we develop a fully decentralized federated learning (FL) framework with an inexact stochastic parallel random walk alternating direction method of multipliers (ISPW-ADMM). Performing more communication efficient and enhanced privacy preservation compared with the current state-of-the-art, the proposed ISPW-ADMM can be partially immune to the impacts from time-varying dynamic network and stochastic data collection, while still in fast convergence. Benefits from the stochastic gradients and biased first-order moment estimation, the proposed framework can be applied to any decentralized FL tasks over time-varying graphs. Thus to further demonstrate the practicability of such framework in providing fast convergence, high communication efficiency, and system robustness, we study the extreme learning machine(ELM)-based FL model for robust beamforming (BF) design in UAV communications, as verified by the numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源