论文标题

分析朝外的SEIR模型的主要SARS-COV-2传输路线

Analyzing the dominant SARS-CoV-2 transmission routes towards an ab initio SEIR model

论文作者

Chaudhuri, Swetaprovo, Basu, Saptarshi, Saha, Abhishek

论文摘要

确定SARS-COV-2病毒不同传播途径的相对重要性是紧急研究的重点。为此,在这项工作中分析了不同的传输途径及其在确定Covid-19大流行进化中的作用。由吸入病毒液滴引起的感染概率(初始射血直径在$0.5-750μm$之间)和相应的干燥核,主要封装在液滴后蒸发后的病毒体,是单独计算的。在典型的,空调但静止的室内空间,对于平均病毒载荷,初始直径$10-50μm$之间的咳嗽液滴具有最高的感染概率。但是,当吸入它们时,直径降低到其初始直径的$ 1/6^{th} $。尽管最初由于液滴引起的近乎统一感染的概率在前25s $之内迅速衰减,但较小但持续的感染概率只有$ \ Mathcal {o}(1000S)$明显地衰减,假设该病毒在干燥的液滴核中同样在液滴中也很好地维持。结合分子碰撞理论适应于计算易感人群与液滴/核之间的接触频率,感染速率常数衍生出Ab -Initio,从而导致适用于任何呼吸事件的SEIR模型 - 矢量组合。病毒载荷,最低感染剂量,病毒半衰期对其载体的阶段的敏感性以及通过排气空气对呼吸喷气/泡泡稀释,可机械地确定基本复制号的特定特定物理模式和基本繁殖数量的特定物理模式$ \ MATHCAL {R}} _0 $,从首次主要电流中。

Identifying the relative importance of the different transmission routes of the SARS-CoV-2 virus is an urgent research priority. To that end, the different transmission routes, and their role in determining the evolution of the Covid-19 pandemic are analyzed in this work. Probability of infection caused by inhaling virus-laden droplets (initial, ejection diameters between $0.5-750μm$) and the corresponding desiccated nuclei that mostly encapsulate the virions post droplet evaporation, are individually calculated. At typical, air-conditioned yet quiescent indoor space, for average viral loading, cough droplets of initial diameter between $10-50 μm$ have the highest infection probability. However, by the time they are inhaled, the diameters reduce to about $1/6^{th}$ of their initial diameters. While the initially near unity infection probability due to droplets rapidly decays within the first $25s$, the small yet persistent infection probability of desiccated nuclei decays appreciably only by $\mathcal{O} (1000s)$, assuming the virus sustains equally well within the dried droplet nuclei as in the droplets. Combined with molecular collision theory adapted to calculate frequency of contact between the susceptible population and the droplet/nuclei cloud, infection rate constants are derived ab-initio, leading to a SEIR model applicable for any respiratory event - vector combination. Viral load, minimum infectious dose, sensitivity of the virus half-life to the phase of its vector and dilution of the respiratory jet/puff by the entraining air are shown to mechanistically determine specific physical modes of transmission and variation in the basic reproduction number $\mathcal{R}_0$, from first principle calculations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源