论文标题

TAG2RISK:利用社交音乐标签来表征抑郁症风险

Tag2Risk: Harnessing Social Music Tags for Characterizing Depression Risk

论文作者

Surana, Aayush, Goyal, Yash, Shrivastava, Manish, Saarikallio, Suvi, Alluri, Vinoo

论文摘要

音乐喜好被认为是自我的镜子。在这个大数据时代,在线音乐流媒体服务使我们能够捕获具有生态有效的音乐听力行为,并提供丰富的信息来源,以识别几个特定于用户的方面。研究表明,音乐参与是内部状态的间接表示,包括内部症状和抑郁。当前的研究旨在发掘出抑郁症风险的个体的趋势和趋势,因为它在自然发生的音乐听力行为中表现出来。获得了心理健康的分数,音乐参与度措施和Last.FM用户的聆听历史(n = 541)。分析了与每个听众最受欢迎的曲目相关的社交标签,以发掘与用户相关的情绪/情感和流派。结果表明,有抑郁症风险的用户中普遍存在的社交标签主要与描述与代表新佩德利(Neo-Psychedelic-,前卫garde-,dream-pop)相关的悲伤相关的情绪有关。这项研究将为基于miR的方法开辟途径,以表征和预测抑郁症的风险,这可能有助于早期检测,并为相应地设计音乐建议提供基础。

Musical preferences have been considered a mirror of the self. In this age of Big Data, online music streaming services allow us to capture ecologically valid music listening behavior and provide a rich source of information to identify several user-specific aspects. Studies have shown musical engagement to be an indirect representation of internal states including internalized symptomatology and depression. The current study aims at unearthing patterns and trends in the individuals at risk for depression as it manifests in naturally occurring music listening behavior. Mental well-being scores, musical engagement measures, and listening histories of Last.fm users (N=541) were acquired. Social tags associated with each listener's most popular tracks were analyzed to unearth the mood/emotions and genres associated with the users. Results revealed that social tags prevalent in the users at risk for depression were predominantly related to emotions depicting Sadness associated with genre tags representing neo-psychedelic-, avant garde-, dream-pop. This study will open up avenues for an MIR-based approach to characterizing and predicting risk for depression which can be helpful in early detection and additionally provide bases for designing music recommendations accordingly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源