论文标题

衍生的一般方程式用于顺序筛选测试的预测值

Derivation of Generalized Equations for the Predictive Value of Sequential Screening Tests

论文作者

Balayla, Jacques

论文摘要

使用贝叶斯定理,我们得出了广义方程,以顺序确定筛选测试的正和负预测值。如果a是敏感性,则b是特异性,$ ϕ $是预测试概率,合并的正预测值$ρ(ϕ)$,$ n $序列阳性测试,由以下方式描述。 $ρ(ϕ)= \ frac {ϕ \ displaystyle \ prod_ {i = 1}^{n} a_n} {ϕ \ displayStyle \ prod_ {i = 1}^{n}^{n} a_n = a_n+(1- ϕ) 如果正式位置$ n_i-k $中断正序列迭代,则由矛盾的负面结果,则由此产生的负预测值由以下方式给出: $ψ(ϕ)= \ frac {[(1- ϕ)b_ {n - }] \ displayStyle \ prod_ {i = b_ {1+}}}^{b _ {(n-1)+}}(1-b_ {n+})} rod_ {i = a_ {1+}}^{a _ {(n-1)+}} a_ {n+}+[(1- ϕ)b_ {n-}] \ displayStyle \ prod_ {i = b_ = b_ {1+}}}}^{b _ {b _ {n-1)} =} 最后,如果负相互矛盾的积极结果在期限位置$ n_i-k $中断负序列迭代,则结果的正预测值由以下方式给出:$λ(ϕ)= \ frac {ϕa_ {n+} \ displaystyle \ prod_ {i = a_ {1-}}}^{a _ {(n-1) - }}}}(1-a_ {n-}}} _ {1 - }}^{a _ {(n-1) - }}}(1-a_ {n-})+[(1- ϕ)(1-b_ {n+})] \ displayStyStyle \ prod_ {i = b_ = b_ {1-}}}}}^{b _ {b _ {n-1)} 在进行串行测试的不同可能情况下,上述方程式提供了预测价值的度量。在预测试概率较低的情况下,最好观察到它们的临床实用性,而单个测试不足以实现临床上显着的预测值,而同样,在临床情况下,在具有较高测试概率的临床情况下,确认疾病状况至关重要。

Using Bayes' Theorem, we derive generalized equations to determine the positive and negative predictive value of screening tests undertaken sequentially. Where a is the sensitivity, b is the specificity, $ϕ$ is the pre-test probability, the combined positive predictive value, $ρ(ϕ)$, of $n$ serial positive tests, is described by: $ρ(ϕ) = \frac{ϕ\displaystyle\prod_{i=1}^{n}a_n}{ϕ\displaystyle\prod_{i=1}^{n}a_n+(1-ϕ)\displaystyle\prod_{i=1}^{n}(1-b_n)}$ If the positive serial iteration is interrupted at term position $n_i-k$ by a conflicting negative result, then the resulting negative predictive value is given by: $ψ(ϕ) = \frac{[(1-ϕ)b_{n-}]\displaystyle\prod_{i=b_{1+}}^{b_{(n-1)+}}(1-b_{n+})}{[ϕ(1-a_{n-})]\displaystyle\prod_{i=a_{1+}}^{a_{(n-1)+}}a_{n+}+[(1-ϕ)b_{n-}]\displaystyle\prod_{i=b_{1+}}^{b_{(n-1)+}}(1-b_{n+})}$ Finally, if the negative serial iteration is interrupted at term position $n_i-k$ by a conflicting positive result, then the resulting positive predictive value is given by: $λ(ϕ)= \frac{ϕa_{n+}\displaystyle\prod_{i=a_{1-}}^{a_{(n-1)-}}(1-a_{n-})}{ϕa_{n+}\displaystyle\prod_{i=a_{1-}}^{a_{(n-1)-}}(1-a_{n-})+[(1-ϕ)(1-b_{n+})]\displaystyle\prod_{i=b_{1-}}^{b_{(n-1)-}}b_{n-}}$ The aforementioned equations provide a measure of the predictive value in different possible scenarios in which serial testing is undertaken. Their clinical utility is best observed in conditions with low pre-test probability where single tests are insufficient to achieve clinically significant predictive values and likewise, in clinical scenarios with a high pre-test probability where confirmation of disease status is critical.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源